Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The growing global energy demand has driven the exploration of alternative, more environmentally friendly energy sources to replace fossil fuels. Palm kernel shell (PKS), a biomass waste, and coal, a primary fossil fuel, have distinct thermochemical characteristics, which present both challenges and opportunities in gasification processes. This study aims to analyze and compare the thermochemical properties of both feedstocks, including proximate and ultimate analyses, gasification efficiency, calorific values, and syngas composition. The research involved raw material characterization, gasification in a reactor, and gas composition analysis using gas chromatography. Results indicated that PKS has a significantly higher volatile matter content (68.31% adb) compared to coal (41.75%), resulting in a higher H2CO ratio (24.19% at 500 °C). Conversely, coal exhibited a higher gross calorific value (HHV) at lower temperatures, reaching 25.38 MJ/Nm3 at 350 °C. However, the carbon conversion efficiency (%CCE) of PKS remained more stable at moderate temperatures, achieving 89.19% at 350 °C, compared to coal, whose efficiency dropped drastically to 7.07% at 650 °C. In conclusion, PKS demonstrates significant potential as an efficient and environmentally friendly renewable energy feedstock at moderate to high temperatures, and it could replace or complement coal in clean energy applications.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
187--199
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Environmental Science Doctoral Study Program, Graduate School, Universitas Sriwijaya, Palembang, Indonesia
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Tamansiswa, Jl. Tamansiswa No. 261 20 Ilir D. I, Ilir Tim. I, Kota Palembang, Sumatera Selatan, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang Prabumulih Km 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang Prabumulih Km 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang Prabumulih Km 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
Bibliografia
- 1. Ahmed, I., Gupta, A. K., & Lee, J. (2020). Syngas production from co-gasification of biomass and coal. Energy Conversion and Management, 215(112898).
- 2. Ashfaq, M. M., Bilgic Tüzemen, G., & Noor, A. (2024b). Exploiting agricultural biomass via thermochemical processes for sustainable hydrogen and bioenergy: A critical review. In International Journal of Hydrogen Energy 84, 1068–1084. https://doi.org/10.1016/j.ijhydene.2024.08.295
- 3. Barco-Burgos, J., Carles-Bruno, J., Eicker, U., Saldana-Robles, A. L., & Alcantar-Camarena, V. (2021). Hydrogen-rich syngas production form palm kernel shells(PKS) biomass on a drowndraft allothermal gasifier using steam as a gasifying agent. Energy Conversion and Management, 245.
- 4. Chen, W., Zhang, M., & Xu, R. (2022). Thermochemical Conversion of Biomass: Proximate and Ultimate Analyses. Journal of Cleaner Production, 345(131045).
- 5. Cheng, F., Zhang, Y., Zhang, G., Zhang, K., Wu, J., & Zhang, D. (2024). Eliminating environmental impact of coal mining wastes and coal processing by-products by high temperature oxy-fuel CFB combustion for clean power Generation: A review. In Fuel 373. https://doi.org/10.1016/j.fuel.2024.132341
- 6. Condori, O., Abad, A., Izquierdo, M. T., de Diego, L. F., Funcia, I., Pérez-Vega, R., Adánez, J., & García-Labiano, F. (2024). Effect of Biomass Torrefaction on the Syngas Quality Produced by Chemical Looping Gasification at 20 kWth Scale. Energy and Fuels, 38(13), 11779–11792. https://doi.org/10.1021/acs.energyfuels.4c01096
- 7. Fauzi, M. A., Setyono, P., & Pranolo, S. H. (2020). Environmental assessment of a small power plant based on palm kernel shell gasification. AIP Conference Proceedings, 2296. https://doi.org/10.1063/5.0030333
- 8. Gao, Y., Wang, M., Raheem, A., Wang, F., Wei, J., Xu, D., Song, X., Bao, W., Huang, A., Zhang, S., & Zhang, H. (2023). Syngas production from biomass gasification: influences of feedstock properties, reactor type, and reaction parameters. In ACS Omega 8(35), 31620–31631. American Chemical Society. https://doi.org/10.1021/acsomega.3c03050
- 9. Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A global assessment: Can renewable energy replace fossil fuels by 2050? Sustain-ability (Switzerland), 14(8). https://doi.org/10.3390/su14084792
- 10. Ibrahim, N. R., Ahmad, R., & Ishak, M. A. M. (2024). Influence of Temperature and Blending Ratio on Product Yield for Co-gasification of Torrefied Palm Kernel Shell and Low-Density Polyethylene. IOP Conference Series: Earth and Environmental Science, 1303(1). https://doi.org/10.1088/1755-1315/1303/1/012007
- 11. Jagodzińska, K., Zaini, I. N., Svanberg, R., Yang, W., & Jönsson, P. G. (2021). Pyrolysis of excavated waste from landfill mining: Characterisation of the process products. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123541
- 12. Kaniapan, S., Hassan, S., Ya, H., Nesan, K. P., & Azeem, M. (2021). The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: A review. Sustainability (Switzerland) 13(6). https://doi.org/10.3390/su13063110
- 13. Kaniapan, S., Suhaimi, H., Hamdan, Y., & Pasupuleti, J. (2021). Experiment analysis on the characteristic of empty fruit bunch, palm kernel shell, coconut shell, and rice husk for biomass boiler fuel. Journal of Mechanical Engineering and Sciences, 15(3), 8300–8309. https://doi.org/10.15282/jmes.15.3.2021.08.0652
- 14. Khan, Z., Shahbaz, M., Taqvi, S. A. A., AlNouss, A., Al-Ansari, T., & Ahmed, U. (2024). Equilibrium modelling of steam gasification of PKS system and CO2 sorption using CaO: A digitalized parametric and techno-economic analysis. Digital Chemical Engineering, 100184. https://doi.org/10.1016/j.dche.2024.100184
- 15. Li, W., Yu, Z., & Guan, G. (2021). Catalytic coal gasification for methane production: A review. Carbon Resources Conversion, 4, 89–99. https://doi.org/10.1016/j.crcon.2021.02.001
- 16. Maitlo, G., Ali, I., Mangi, K. H., Ali, S., Maitlo, H. A., Unar, I. N., & Pirzada, A. M. (2022). Thermochemical conversion of biomass for syngas production: Current status and future trends. Sustainability (Switzerland) 14(5). https://doi.org/10.3390/su14052596
- 17. Nabila, R., Hidayat, W., Haryanto, A., Hasanudin, U., Iryani, D. A., Lee, S., Kim, S., Kim, S., Chun, D., Choi, H., Im, H., Lim, J., Kim, K., Jun, D., Moon, J., & Yoo, J. (2023). Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization. In Renewable and Sustainable Energy Reviews 176. https://doi.org/10.1016/j.rser.2023.113193
- 18. Osei, I., Addo, A., & Kemausuor, F. (2023). Optimal evaluation of crop residues for gasification in Ghana using integrated multi-criterial decision making techniques. Heliyon, 9(10). https://doi.org/10.1016/j.heliyon.2023.e20553
- 19. Quintero-Coronel, D. A., Lenis-Rodas, Y. A., Corredor, L., Perreault, P., Bula, A., & Gonzalez-Quiroga, A. (2022). Co-gasification of biomass and coal in a top-lit updraft fixed bed gasifier: Syngas composition and its interchangeability with natural gas for combustion applications. Fuel, 316. https://doi.org/10.1016/j.fuel.2022.123394
- 20. Rao, Z., Wang, K., Cao, Y., Feng, Y., Huang, Z., Chen, Y., Wei, S., Liu, L., Gong, Z., Cui, Y., Li, L., Tu, X., Ma, D., & Zhou, Y. (2023). Light-reinforced key intermediate for anti-coking to boost highly du-rable methane dry reforming over single atom Ni active sites on CeO2. Journal of the American Chemical Society, 145(45), 24625–24635.
- 21. Rey, J. R. C., Longo, A., Rijo, B., Pedrero, C. M., Tarelho, L. A. C., Brito, P. S. D., & Nobre, C. (2024). A review of cleaning technologies for biomass-derived syngas. Fuel 377. https://doi.org/10.1016/j.fuel.2024.132776
- 22. Rosyadi, I., Suyitno, Arifin, Z., Sutardi, T., & Satriyo, R. G. (2024). Thermodynamic equilibrium simulation for hydrogen-rich syngas from gasification of MSW and coconut shells. Evergreen, 11(3), 2545–2554. https://doi.org/10.5109/7236895
- 23. Sher, F., Yaqoob, A., Saeed, F., Zhang, S., Jahan, Z., & Klemeš, J. J. (2020). Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation. Energy, 209. https://doi.org/10.1016/j.energy.2020.118444
- 24. Su, H., Yan, M., & Wang, S. (2022). Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production. Renewable and Sustainable Energy Reviews, 154, 111831.
- 25. Tang, C., Pan, J., Zhu, D., Guo, Z., Yang, C., & Li, S. (2024). Optimizing combustion efficiency in blast furnace injection: A sustainable approach using biomass char and coal mixtures. Sustainability (Switzerland), 16(14). https://doi.org/10.3390/su16146140
- 26. Uchegbulam, I., Momoh, E. O., & Agan, S. A. (2022). Potentials of palm kernel shell derivatives: a critical review on waste recovery for environmental sustainability. In Cleaner Materials 6. https://doi.org/10.1016/j.clema.2022.100154
- 27. Wang, C., Zhu, C., Huang, J., Li, L., & Jin, H. (2021). Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor. Renewable Energy, 168, 829–837. https://doi.org/10.1016/j.renene.2020.12.104
- 28. Wang, Y., & Wu, J. J. (2023). Thermochemical conversion of biomass: Potential future prospects. Renewable and Sustainable Energy Reviews 187. https://doi.org/10.1016/j.rser.2023.113754
- 29. Zamri, M. F. M. A., Milano, J., Shamsuddin, A. H., Roslan, M. E. M., Salleh, S. F., Rahman, A. A., Bahru, R., Fattah, I. M. R., & Mahlia, T. M. I. (2022). An overview of palm oil biomass for power generation sector decarbonization in Malaysia: Progress, challenges, and prospects. Wiley Interdisciplinary Reviews: Energy and Environment 11(4). https://doi.org/10.1002/wene.437
- 30. Zhang, Y., Ji, Y., & Qian, H. (2021). Progress in thermodynamic simulation and system optimization of pyrolysis and gasification of biomass. Green Chemical Engineering 2(3), 266–283. https://doi.org/10.1016/j.gce.2021.06.003
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-007d2f8f-3c9a-431e-baa2-fe574ac0f8eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.