PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Melting and the Debye Temperature of for BCC and FCC Metals Under Pressure: A Calculation from the Statistical Moment Method

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
We build the melting theory and the theory of the Debye temperature for defective and perfect cubic metals mainly based on the statistical moment method. Our theoretical results are applied to metals Ni, Pd and Pt. Our calculations of melting temperatures agree well with experiments and other calculations. Our other calculations are highly reliable.
Twórcy
  • Hanoi National University of Education, 136 Xuan Thuy, Hanoi, Vietnam
autor
  • Hanoi National University of Education, 136 Xuan Thuy, Hanoi, Vietnam
  • Mac Dinh Chi High School, Chu Pah district, Gia Lai province, Vietnam
Bibliografia
  • [1] D. Errandonea, B. Schwager, R. Ditz, C. Gessmann, R. Boehler, M. Ross, Systematics of transition-metal melting. Phys. Rev. B. 63 (13), 132104 (2001). DOI: https://doi.org/10.1103/PhysRevB.63.132104
  • [2] S.N. Luo, T.J. Ahrens, Shock-induced superheating and melting curves of geophysically important minerals. Phys. Eart. Planet. Int. 143-144, 369 (2004). DOI: https://doi.org/10.1016/j.pepi.2003.04.001
  • [3] Q. An, S.N. Luo, L.B. Han, L. Zheng, O. Tschauner, Melting of Cu under hydrostatic and shock wave loading to high pressures. J. Phys: Cond. Matter. 20 (9), 8 pp (2008). DOI: https://doi.org/10.1088/0953-8984/20/9/095220
  • [4] B.J. Jesson, P.A. Madden, Ab initio determination of the melting point of aluminum by thermodynamic integration. J. Chem. Phys. 113 (14), 5924 (2000). DOI: https://doi.org/10.1063/1.1290701
  • [5] D. Errandonea, Improving the understanding of the melting behaviour of Mo, Ta, and W at extreme pressures. Phys. B: Cond. Matter. 357 (3-4), 356 (2005). DOI: https://doi.org/10.1016/j.physb.2004.11.087
  • [6] L. Vočadlo, D. Alfè, Ab initio melting curve of the fcc phase of aluminum. Phys. Rev. B. 65 (21), 214105 (2002). DOI: https://doi.org/10.1103/PhysRevB.65.214105
  • [7] C.M. Liu, X.R. Chen, C. Xu, L.C. Cai, F.Q. Jing, Melting curves and entropy of fusion of body-centered cubic tungsten under pressure. J. Appl. Phys. 112 (1), 013518 (2012). DOI: https://doi.org/10.1063/1.4733947
  • [8] H.M. Strong, F.P. Bundy, Fusion curves of four group vii metals to 100 000 atm. Phys. Rev. 115, 278 (1959). DOI: https://doi.org/10.1103/PhysRev.115.278
  • [9] H.M. Strong, Melting and other phase transformations at high pressure. In Progress in very high pressure research, in: F.P. Bundy et al. (Eds.), John Wiley and Sons, New York (1961).
  • [10] D. Errandonea, B. Schwager, R. Ditz, C. Gessmann, R. Boehler, M. Ross, Systematics of transition-metal melting. Phys. Rev. B. 63, 132104, 1 (2001). DOI: https://doi.org/10.1103/PhysRevB.63.132104
  • [11] P. Lazor, PhD Thesis, Phase diagrams, elasticity and thermodynamics of Ni, co and Fe under high pressure, Uppsala University, Sweden (1994).
  • [12] Z. Wang, P. Lazor, S.K. Saxena, A Simpled modeo for assessing the high pressure melting of metals: nickel, aluminium and platinum. Phys. B, 293, 408 (2001). DOI: https://doi.org/10.1016/S0921-4526(00)00542-1
  • [13] A.K. McMahan, R.C. Albers, Insulating nickel at a pressure of 34 Tpa (340 Mbar). Phys. Rev. Lett. 49, 1198 (1982). DOI: https://doi.org/10.1103/PhysRevLett.49.1198
  • [14] D.A. Young, Phase diagrams of the elements, Berkeley, University of California Press, California (1991).
  • [15] B. Chen, D. Penwell, MB. Bruger, The compressibility of nanocrystalline nickel. Solid State Commun. 115 (4), 191 (2000). DOI: https://doi.org/10.1016/S0038-1098(00)00160-5
  • [16] H.K. Mao, P.M. Bell, J.Shaner, D. Steinberg (1979), A System of pressure calibration for the range 0.05-1.0 Mbar based on shock wave equations of state for Cu, Mo, Pd, and Ag. in: K.D. Timmerhaus, M.S Barber (Eds.), high pressure science and technology. Springer, Boston, MA (1977).
  • [17] H.K. Mao, P.M. Bell, J. Shaner, D. Steinberg, Specific volume measurements of Cu, Mo, Pd and Ag and calibration of the ruby R fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276 (1978). DOI: https://doi.org/10.1063/1.325277
  • [18] P. Soderlind, O. Eriksson, B. Johansson, J.M. Wills, Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B. 48, 5844 (1993). DOI: https://doi.org/10.1103/PhysRevB.48.5844
  • [19] E.A. Perez-Albuerne, K.F. Forsgren, H.G. Drickamer, Apparatus for X-ray measurements at very high pressure. Rev. Sci. Instrum. 35, 29 (1964). DOI: https://doi.org/10.1063/1.1718703
  • [20] N. Singh, Structural phase transformation of Cu, Pd and Au using transition metal pair potential. Phys. B. 269, 211 (1999). DOI: https://doi.org/10.1016/S0921-4526(98)00660-7
  • [21] A. Migault, J.P. Jamain, J. Jacquesson, Fusion curves at high pressure and gruneisen parameter of metals, in 7 Int. AIRAPT conf. high pressure science and technology, Le Creusot (France), 2, 938 (1979).
  • [22] H. Schlosser, P. Vinet, J. Ferrante, Pressure dependence of the melting temperature of metals. Phys. Rev. B. 40, 5929 (1989). DOI: https://doi.org/10.1103/physrevb.40.5929
  • [23] J.W. Jeong, K.J. Chang, Molecular-dynamics simulation for the shock Hugoniot meltings of Cu, Pd and Pt. J. Phys.: Cond. Matter. 11, 3799 (1999). DOI: https://doi.org/10.1103/PhysRevB.59.329
  • [24] L.F. Vereshchagin, N.S. Fateeva, Melting temperatures of refractory metals at high pressures. High Temp.-High Pres. 9, 619 (1977).
  • [25] A. Kavner, R. Jeanloz, High-pressure melting curve of platinum. J. Appl. Phys. 83, 7553 (1998). DOI: https://doi.org/10.1063/1.367520
  • [26] N.Q. Hoc, B.D. Tinh and N.D. Hien, Influence of temperaturę and pressure on the electrical resistivity of gold and copper up to 1350K and 100 GPa. Mater. Res. Bull. 128, 110874 (2020). DOI: https://doi.org/10.1016/j.materresbull.2020.110874G
  • [27] N.Q. Hoc, B.D. Tinh, N.D. Hien, Stress - strain curve of FCC interstitial alloy AuSi under pressure. Rom. J. Phys. 65, 608 (2020).
  • [28] N.Q. Hoc, B.D. Tinh, G. Coman, N.D. Hien, On the melting of alloys FeX (X = Ni, Ta, Nb, Cr) under pressure up to 5 GPa. J. Phys. Soc. Jpn. 89, 114602 (2020). DOI: https://doi.org/10.7566/JPSJ.89.114602
  • [29] N.T. Dung, Inffluence of impurity concentration, atomic number, temperature and tempering time on microstructure and phase transformation of Ni1-xFex(x = 0,1, 0,3, 0,5) nanoparticles. Mod. Phys. Lett. B 32, 1850208 (2020). DOI: https://doi.org/10.1142/S0217984918502044
  • [30] T.Q. Tuan, N.T. Dung, Effet of heating rate, cupper impurity concentration, atomic numbedr, temperature, annealing time on structure, crystalization temperature and crystallization process of Ni1-xCux (x = 0,1, 0,3, 0,5, 0,7). Int. J. Mod. Phys. B 32, 18300009 (2018). DOI: https://doi.org/10.1142/S0217979218300098
  • [31] N.T. Dung, P.L. Kien, N.T. Phuong, Simulation on the factors affecting crystallization process of FeNi alloy by molecular dynamics. ACS Omega 4, 14605 (2019). DOI: https://doi.org/10.1021/acsomega.9b02050
  • [32] N.T. Dung, N.C. Cuong, D.Q. Van, Study on the effect of doping on lattice constant and electronic structure of bulk aucu by the density functional theory. J. Multiscale Mod. 11, 2030001 (2020). DOI: https://doi.org/10.1142/S1756973720300014
  • [33] N.T. Dung, N.T. Phuong, Molecular dynamics study on factors influencing the structure, phase transition and crystallization process of NiCu6912 nanoparticle. Mater. Chem. Phys. 250, 123075 (2020). DOI: https://doi.org/10.1016/j.jallcom.2019.152133
  • [34] C.L. Van, D.Q. Van, N.T. Dung, Ab initio calculations on the structural and electronic properties of agau alloys. ACS Omega 5, 31391 (2020). DOI: https://doi.org/10.1021/acsomega.0c04941
  • [35] N.T. Dung, C.L. Van, S. Talu, The structure and crystalizing process of NiCu alloy: A molecular dynamic simulatiom method. J. Compos. Sci. 5, 18 (2021). DOI: https://doi.org/10.3390/jcs5010018
  • [36] N.T. Dung, Z-axis deformation method to investigate of system size, structural phase transition on mechanical properties of bulk nickel. Mater. Chem. Phys. 252, 123275 (2020). DOI: https://doi.org/10.1016/j.matchemphys.2020.123275
  • [37] T.Q. Tuan, N.T. Dung, S. Talu, Study on the influence of factors on the structural and mechanical properties of amorphous aluminium by molecular dynamics method. Adv. Mater. Sci. Eng. 1, 5564644 (2021). DOI: https://doi.org/10.1155/2021/5564644
  • [38] N. Tang, V.V. Hung, Investigation of the thermodynamic properties of anharmonic crystals by the momentum method. Phys. Stat. Sol. (b), 149, 511 (1988); 161, 165 (1990); 162, 371 (1990); 162, 379 (1990). DOI: https://doi.org/10.1002/pssb.2221490212; DOI: https://doi.org/10.1002/pssb.2221610115; DOI: https://doi.org/10.1002/pssb.2221620206; DOI: https://doi.org/10.1002/pssb.2221620207
  • [39] V.V. Hung, Statistical moment method in studying elastic and thermodynamic properties of crystals, HNUE Publishing House (2009).
  • [40] L.T.C. Tuyen, N.Q. Hoc, B.D. Tinh, D.Q. Vinh, T.D. Cuong, Study on the melting of interstitial alloys FeH and FeC with BCC structure under pressure. Chin. J. Phys. 59, 1, (2019). DOI: https://doi.org/10.1155/2018/5251741
  • [41] T.D. Cuong, N.Q. Hoc, P.D. Anh, Application of the Statistical Moment Method to Melting Properties of Ternary alloys with FCC Structure. J. Appl. Phys. 125, 215112 (2019). DOI: https://doi.org/10.1063/1.5089228
  • [42] T.D. Cuong, G. Coman, N.Q. Hoc, N.T. Hoa, D.Q. Vinh, The melting temperature of BCC perfect ternary alloy FeCrC under pressure. IOP conf. Ser.: Mater. Sci. Eng. 595, 012018 (2019). DOI: https://doi.org/10.1088/1757-899X/595/1/012018
  • [43] V.V. Hung, D.T. Hai, L.T.T. Binh, Melting curve of metals with defect: Presure dependence. Comp. Mat. Sci. 79, 789 (2013). DOI: https://doi.org/10.1016/j.commatsci.2013.07.042
  • [44] N.Q. Hoc, L.H. Viet, N.T. Dung, On the melting of defective FCC interstitial alloy FeC under pressure up to 100 GPa. J. Electron. Mater. 49 (2), 910 (2020). DOI: https://doi.org/10.1007/s11664-019-07829-9
  • [45] N.Q. Hoc, T.D. Cuong, B.D. Tinh, L.H. Viet, Study on the melting of defective interstitial alloys TaSi and WSi with BCC structure. J. Korean Phys. Soc. 71 (8), 801 (2019). DOI: https://doi.org/10.3938/jkps.74.801
  • [46] N.Q. Hoc, T.D. Cuong, B.D. Tinh, L.H. Viet, High-pressure melting curves of FCC metals Ni, Pd and Pt with defects, Mod. Phys. Lett. B, 33 (25), 1950300 (2019). DOI: https://doi.org/10.1142/S0217984919503007
  • [47] N.Q. Hoc, N.D. Hien, N.T. Dung, C.L. Van, S. Talu, Study on the malting temperature, the jumps of volume, entahalpy and entropy and the Debye temperature for the BCC defective and perfectinterstitial alloys WSi under pressure. J. Compos. Sci. 5, 153 (2021). DOI: https://doi.org/10.3390/jcs5060153 https://doi.org/10.1016/j.matchemphys.2020.123275
  • [48] V.V. Hung, Investigation of the change in volume, entropy and specific heat for metals on melting. Proc. the 22nd National Conference of Theoretical Physics, Do Son (Vietnam), 3-5.8.1997, 199.
  • [49] M.J. Graf, C.W. Greeff, J.C. Boettger, High-Pressure Debye-Waller and Grüneisen parameters of gold and copper. AIP Conf. Proc. 706 (1), 65 (2004). DOI: https://doi.org/10.1063/1.1780185
  • [50] L.A. Girifalco, Statistical physics of materials, John Wiley and Sons, New York (1973).
  • [51] M.N. Magomedov, On calculating the Debye temperature and the Gruneisen parameter. Zhur. Fiz. Khim. 61 (4), 1003, (1987) (in Russian).
  • [52] M.N. Magomedov, The calculation of the parameters of the Mie-Lennard-Jones potential. High Temp. 44 (4), 513 (2006). DOI: https://doi.org/10.1007/s10740-006-0064-5
  • [53] L. Koci, E.M. Bringa, D.S. Ivanov, J. Hawreliak, J. McNaney, A. Higginbotham, R. Ahuja, Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model. Phys. Rev. B 74 (1), 012101 (2006). DOI: https://doi.org/10.1103/PhysRevB.74.012101
  • [54] F. Luo, X.R. Chen, L.C. Cai, G.F. Ji, Solid-liquid interfacial Energy and melting properties of nickel under pressure from molecular dynamics. J. Chem. Eng. Data, 55 (11), 5149 (2010). DOI: https://doi.org/10.1021/je1007058
  • [55] M. Pozzo, D. Alfe, Melting curve of face-centeredcubic nickel from first principles calculations. Phys. Rev. B 88 (2), 024111 (2013). DOI: https://doi.org/10.1103/PhysRevB.88.024111
  • [56] D.V. Minakov, P.R. Levashov, Melting curves of metals with excited electrons in the quasiharmonic approximation. Phys. Rev. B 92 (2), 224102 (2015). DOI: https://doi.org/10.1103/PhysRevB.92.224102
  • [57] O.T. Lord, I.G. Wood, D.P. Dobson, L. Vocadlo, W. Wang, A.R. Thomson, E.T.H. Wann, G. Morard, M. Mezouar, M.J. Walter, The melting curve of Ni to 1 Mbar. Earth Plan. Sci. Let. 408, 226 (2014). DOI: https://doi.org/10.1016/j.epsl.2014.09.046
  • [58] J.W. Jeong, K.J. Chang, Molecular-dynamics simulations for the shock Hugoniot melting of Cu, Pd and Pt. J. Phys.: Cond. Matter, 11 (19), 3799 (1999). DOI: https://doi.org/10.1088/0953-8984/11/19/302
  • [59] Z.L. Liu, X.L. Zhang, L.C. Cai, Shock melting method to determine melting curve by molecular dynamics: Cu, Pd and Al. J. Chem. Phys. 143 (11), 114101 (2015). DOI: https://doi.org/10.1063/1.4930974
  • [60] Z.L. Liu, J.H. Yang, L.C. Cai, F.Q. Jing, D. Alfe, Structurtal and thermodynamic properties of compressed palladium: Ab initio and molecular dynamics study. Phys. Rev. B 83 (14), 144113 (2011). DOI: https://doi.org/10.1103/PhysRevB.83.144113
  • [61] D. Errandonea, High-pressure melting curves of the transition metals Cu, Ni, Pd and Pt. Phys. Rev. B 87 (5), 054108 (2013). DOI: https://doi.org/10.1103/PhysRevB.87.054108
  • [62] A.B. Belonoshko, A. Rosengren, High-pressure melting curve of platinum from ab initio Z method. Phys. Rev. B 85 (17), 174104 (2012). DOI: https://doi.org/10.1103/PhysRevB.85.174104
  • [63] H.K. Hieu, Systematic prediction of high-pressure melting curves of transition metals. J. Appl. Phys. 116 (16), 163505 (2014). DOI: https://doi.org/10.1063/1.4899511
  • [64] A. Kavner, R. Jeanloz, High-pressure melting curve of platinum. J. Appl. Phys. 83 (12), 7553 (1998). DOI: https://doi.org/10.1063/1.367520
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Identyfikator YADDA
bwmeta1.element.baztech-0077b3b2-b716-45c1-9fa4-805afbffec4f