PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From Traditional Industry to Smart Regional Specialisation: Textile Industry Transformation in the Łódź Region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the article is to examine how the textile industry in the Łódź Voivodeship has evolved in the context of building smart regional specialisations. The ideas underlying the concept of smart regional specialisation in order to use this foundation to outline the trends in the development and transformation of the textile industry in Central and Eastern European countries are described. The transformation of the innovative capacity of this industry in the Łódź region is shown. The research used an analysis of existing materials, statistical methods and LQ location indicators. Specific territorial capital accumulated for over two centuries and encapsulated in tradition, knowledge, skills, and economic relations in the Łódź region has provided a unique economic potential for the development of the textile industry. The period of rapid transformation was followed by stabilisation and the reconstruction of its potential and building smart specialisation, which will become the impetus for regional competitiveness.
Rocznik
Strony
25--39
Opis fizyczny
Bibliogr. 78 poz., rys., tab.
Twórcy
  • Department of Regional Economics and Environment, Faculty of Economics and Sociology, University of Lodz, Lodz, Poland
  • Łukasiewicz Research Network- Lodz Institute of Technology, Lodz, Poland
  • Łukasiewicz Research Network- Lodz Institute of Technology, Lodz, Poland
  • Łukasiewicz Research Network- Lodz Institute of Technology, Lodz, Poland Textile Institute, Lodz University of Technology, Lodz, Poland
Bibliografia
  • 1. European Commission. Expert Group „Knowledge for growth”. 2005.
  • 2. McCann P, Ortega-Argilés R. Smart Specialization, Regional Growth and Applications to European Union Cohesion Policy. Regional Studies. 3rd August 2015;49(8):1291–302.
  • 3. Foray D, David A, Hall B. Smart Specialisation: the Concept. Knowledge Economists Policy Brief. 2007;(9):5–9.
  • 4. Foray D. Smart specialisation: opportunities and challenges for regional innovation policy. London ; New York: Routledge Taylor & Francis Group; 2015. 103 s.
  • 5. Foray D. On the policy space of smart specialization strategies. Eur. Plan. Stud. 2016;24(8):1428–37.
  • 6. Rusu M. Smart Specialization a Possible Solution to the New Global Challenges. Procedia Econ. Financ. 2013;6:128–36.
  • 7. Asheim B, Grillitsch M, Trippl M. Smart Specialization as an Innovation-Driven Strategy for Economic Diversification: Examples From Scandinavian Regions. W: Advances in the Theory and Practice of Smart Specialization [Internet]. Elsevier; 2017 [citation: August 2023]. s. 73–97. Available at: https://linkinghub.elsevier.com/retrieve/pii/B9780128041376000048
  • 8. Kroll H. Efforts to Implement Smart Specialization in Practice—Leading Unlike Horses to the Water. Eur. Plan. Stud. 2015;23(10):2079–98.
  • 9. Borseková K, Vaňová A, Vitálišová K. Smart Specialization for Smart Spatial Development: Innovative Strategies for Building Competitive Advantages in Tourism in Slovakia. Socio-Econ. Plan. Sci. 2017;58:39–50.
  • 10. Asheim BT, Boschma R, Cooke P. Constructing Regional Advantage: Platform Policies Based on Related Variety and Differentiated Knowledge Bases. Reg. Stud. 2011;45(7):893–904.
  • 11. Nowakowska AE. New idea of building regional innovative capacities – smart specialisations. Folia Oeconomica [Internet]. 8 sierpień 2016 [cit. august 2023];2(320). Available at: https://czasopisma.uni.lodz.pl/foe/article/view/328
  • 12. Balland PA, Boschma R, Crespo J, Rigby DL. Smart specialization policy in the European Union: relatedness, knowledge complexity and regional diversification. Reg. Stud. 2019;53(9):1252–68.
  • 13. Trippl M, Zukauskaite E, Healy A. Shaping smart specialization: the role of place-specific factors in advanced, intermediate and less-developed European regions. Reg. Stud. 2020;54(10):1328–40.
  • 14. Sotarauta M. Smart specialization and place leadership: dreaming about shared visions, falling into policy traps? Reg. Stud. Reg. Sci. 2018;5(1):190–203.
  • 15. Nowakowska A. Budowanie inteligentnych specjalizacji – doświadczenia i dylematy polskich regionów. (in Polish), Stud. Praw-Ekonom. 2015;XCVII:325–40.
  • 16. Czyż T. Metoda wskaźnikowa w geografii społeczno-ekonomicznej. (in Polish) Rozwój Regionalny i Polityka Regionalna. 2016;(34):9–19.
  • 17. Sheng L. EU Textile and Apparel Industry and Trade Patterns. Department of Fashion & Apparel Studies, University of Delaware; 2023.
  • 18. Kan C, Lam Y. Future Trend in Wearable Electronics in the Textile Industry. App Sci. 2021; 11: 3914
  • 19. Sikka M, Sarkar A, Garg S. Artificial intelligence (AI) in textile industry operational modernization. RJTA. 2022.
  • 20. UE Report 2020. Advanced Technologies for Industry – Sectoral Watch. Technological trends in the textiles industry.
  • 21. Madej-Kiełbik L, Gzyra-Jagieła K, Jóźwik-Pruska J, Wiśniewskia-Wrona M, Dymel M. Biodegradable Nonwoven Materials with Antipathogenic Layer. Environments. 2022; 9:79;
  • 22. Kudzin MH, Boguń M, Mrozińska Z, Kaczmarek A. Physical Properties, Chemical Analysis, and Evaluation of Antimicrobial Response of New Polylactide/Alginate/Copper Composite Materials. Mar. Drugs. 2020; 18: 660.;
  • 23. Guzińska K, Kaźmierczak D, Dymel M, Pabjańczyk-Wlazło E, Boguń M. Anti-bacterial materials based on hyaluronic acid: Selection of research methodology and analysis of their anti-bacterial properties. Mat. Sci. Eng. C. 2018; 93.
  • 24. Pabjańczyk-Wlazło E, Król P, Krucińska I, Chrzanowski M, Puchalski M, Szparaga G, et al. Bioactive nanofibrous structures based on hyaluronic acid. Advances. In Polym. Tech. 2018; 37:6
  • 25. Chowdhury, S. R. Environmental impact of textiles. Woodhead Publishing; 2017.
  • 26. Subramanian, R. Environmental impact of textile dyeing. Woodhead Publishing; 2016.
  • 27. Wei T, Kunzhen H, Chengyan Z, Zeyu S, Lingda S, Manyu H, et al. Recent progress in biobased synthetic textile fibers. Front. Mat. 2022; 9.
  • 28. Nofa RM. Biodegradable Textiles, Recycling, and Sustainability Achievement. In book: Handbook of Biodegradable Materials Publisher: Springer Nature; 2022.
  • 29. Harsanto B, Primiana I, Sarasi V, Satyakti Y. Sustainability Innovation in the Textile Industry: A Systematic Review. Sustainability. 2023; 15(2):1549.
  • 30. OECD. Glossary of statistical terms. Available online: https://stats.oecd.org/glossary/detail.asp?ID=203 [access september 2023]
  • 31. Glossary of Environment Statistics. Studies in Methods, Series F, No. 67, United Nations, New York; 1997.
  • 32. Poznyak T, Chairez Oria I, Poznyak AS. Ozonation and Biodegradation in Environmental Engineering, Dynamic Neural Network Approach. 1st ed.; 2018; pp.353–388.
  • 33. Egan J, Salmon S. Strategies and progress in synthetic textile fiber biodegradability. SN Appl. Sci. 2022; 4(22).
  • 34. Yeo JCC, Muiruri K, Thitsartarn W, Li Z, He C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Mat. Sci. Eng. C. 2018; 92: 1092-116.
  • 35. Ramasamy R, Subramanian BR. Synthetic textile and microfiber pollution: a review on mitigation strategies. Environ. Sci. Pollut. Res. 2021; 28:41596-611.
  • 36. Júnior HLO, Neves RM, Monticeli FM, Dall Agnol L. Smart Fabric Textiles: Recent Advances and Challenges. Textiles. 2022; 2(4):582-605.
  • 37. Pantani R, Sorrentino A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013; 98(5): 1089–96
  • 38. OECD GUIDELINE FOR TESTING OF CHEMICALS. 301 B CO2 EVOLUTION TEST; 1992.
  • 39. ISO 9439: 1999. Water quality — Evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium — Carbon dioxide evolution test; 1999.
  • 40. ISO 14852:2021. Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium — Method by analysis of evolved carbon dioxide; 2021.
  • 41. ISO 14851:2019. Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium — Method by measuring the oxygen demand in a closed respirometer; 2019.
  • 42. ADTM D5338. Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, Incorporating Thermophilic Temperatures, 2021.
  • 43. ISO 14855:2018. Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions — Method by analysis of evolved carbon dioxide — Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test; 2018.
  • 44. EN 14046:2003. Evaluation of the ultimate aerobic biodegradability and disintegration of packaging materials under controlled composting conditions - Method by analysis of released carbon dioxide; 2003.
  • 45. EN 13432:2002. Packaging . Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packaging; 2002.
  • 46. ASTM D6400-21. Standard Specification for Labelling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities; 2021.
  • 47. ISO 17556:2019. Plastics — Determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved; 2019.
  • 48. DIN EN ISO 11721-1:2001. Textiles — Determination of resistance of cellulose-containing textiles to micro-organisms — Soil burial test — Part 1: Assessment of rot-retardant finishing; 2001.
  • 49. DIN EN ISO 846: 2019. Plastics — Evaluation of the action of microorganisms; 2019.
  • 50. ISO 21701:2019 Textiles —Test method for accelerated hydrolysis of textile materials and biodegradation under controlled composting conditions of the resulting hydrolysate; 2019.
  • 51. ISO 17088:2021. Specifications for compostable plastics; 2021.
  • 52. Juanga-Labayen JP, Labayen IV, Yuan Q. A Review on Textile Recycling Practices and Challenges. Textiles. 2022; 2(1): 174-188.
  • 53. United Nations Environment Programme. Sustainability and Circularity in the Textile Value Chain – A Global Roadmap. Paris; 2023.
  • 54. Textiles in Europe’s circular economy [https://www.eea.europa.eu/publications/textiles-in-europes-circular-economy] [access October 2023].
  • 55. Sandin, G, Peters GM. Environmental impact of textile reuse and recycling—A review. J. Clean. Prod. 2018; 184: 353–65.
  • 56. Kowalski K, Matera R, Sokołowicz ME. Cotton Matters. A Recognition and Comparison of the Cottonopolises in Central-Eastern Europe during the Industrial Revolution. FTEE. 2018;26(6(132)):16–23.
  • 57. Walker AR. Lodz: The Problems Associated with Restructuring the Urban Economy of Poland’s Textile Metropolis in the 1990s. Urban Studies. 1993;30(6):1065–80.
  • 58. Jewtuchowicz A, Suliborski A. Struktura gospodarcza Łodzi w latach 1918-1989. In: In S Liszewski (Ed), Łódź Monografia miasta. (in Polish) Łódź: Łódzkie Towarzystwo Naukowe; 2009. pp. 297–33.
  • 59. Hajdys D, Jabłońska M, Ślebocka M. Impact of Textile Industry Restructuring on the Financial Condition of Local Government Units for the Example of the Łódź Region in Poland. FTEE 2020;28(5(143)):8–19.
  • 60. Nowakowska A, Walczak B. Dziedzictwo przemysłowe jako kapitał terytorialny. Przykład Łodzi. (in Polish) GPT [https://czasopisma.uni.lodz.pl/gospodarka/article/view/2072]. 29 wrzesień 2016 [July 2023].
  • 61. Regionalne Obserwatorium Terytorialne (ROT). Aktualizacja Regionalnej Strategii Innowacji (in Polish) - unpublished material, 2023.
  • 62. GUS. Raport o sytuacji społeczno–gospodarczej województwa łódzkiego 2022. (in Polish) 2023.
  • 63. Regionalne Obserwatorium Terytorialne (ROT). Stworzenie narzędzi do monitorowania innowacyjności regionu łódzkiego z wykorzystaniem procesu przedsiębiorczego odkrywania. (in Polish)2017.
  • 64. Yilmaz N, Karaalp-Orhan H. Comparative Advantage of Textiles and Clothing: Evidence for Top Exporters in Eastern Europe. F&TinEE. 2015;23(6(114)):8–13.
  • 65. Dziuba R, Kucharska M, Madej-Kiełbik L, Sulak K, Wiśniewska-Wrona M. Biopolymers and biomaterials for special applications within the context of the circular economy. Materials. 2021; 14 (24):7704-18.
  • 66. Sharma N, Allardyce B, Rajkhowa R, Adhileya A, Agrawal R. A Substantial Role of Agro-Textiles in Agricultural Applications. Front Plant Sci. 2022; 13:895740-50.
  • 67. Chruściel JJ. Modifications of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers—A Review. Polymers. 2022; 14: 4382-419.
  • 68. Skrzetuska E, Puszkarz A, Nosal J. Assessment of the Impact of the Surface Modification Processes of Cotton and Polyester Fabrics with Various Techniques on Their Structural, Biophysical, Sensory, and Mechanical Properties. Polymers. 2022; 14 (4): 796-822,
  • 69. Ruckdashel RR, Venkataraman D, Park JH. Smart textiles: A toolkit to fashion the future. J. Appl. Phys. 2021; 129: 130903-20.
  • 70. Bartkowiak G, Dąbrowska A, Greszta A. Development of Smart Textile Materials with Shape Memory Alloys for Application in Protective Clothing. Materials. 2020; 13(3): 689-705.
  • 71. Pabjańczyk-Wlazło EK, Puszkarz AK, Bednarowicz A, Tarzyńska N, Sztajnowski S. The Influence of Surface Modification with Biopolymers on the Structure of Melt-Blown and Spun-Bonded Poly(lactic acid) Nonwovens. Materials. 2022; 15(20): 7097-116.
  • 72. Zhu M, Han J, Wang F, Shawo W, Xiong R, Zhang Q, et al. Electrospun Nanofibers Membranes for Effective Air Filtration. Macromol. Mat. Eng. 2017; 302 (1): 1600353.
  • 73. Shiu B-C, Zhang Y, Yuan Q, Lin J-H, Lou C-W, Li, Y. Preparation of Ag@ZIF-8@ PP Melt-Blown Nonwoven Fabrics: Air Filter Efficacy and Antibacterial Effect. Polymers. 2021; 13: 3773-86.
  • 74. Kamble Z, Behera BK. Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr Build Mater. 2021; 284: 122800.
  • 75. Mobiltech Technical Textiles Application in Automobile Industry. [https://textiledetails.com/mobiltech-technical-textiles-application/] [access October 2023].
  • 76. Tęsiorowski Ł, Frydrysiak M, Zięba J. Wireless transmission of breath rhythm in textronic system. 7th International Conference - TEXSCI, Liberec, Czech Republic; 2010.
  • 77. Angelucci A, Cavicchioli M, Cintorrino IA, Cintorrino IA, Lauricella G, Rossi C, et al. Smart Textiles and Sensorized Garments for Physiological Monitoring: A Review of Available Solutions and Techniques. Sensors. 2021; 21: 814- 836.
  • 78. Chen X, Gao TY, Tian B. Research on Production Management and Optimization of Multisensor Intelligent Clothing in 5G Era. J. Sens. 2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0077ad62-9111-472f-b45c-03a03ded3c47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.