Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Elbow contracture is a common complication post-elbow trauma, the biomechanical environment after anterior capsule injury was complex. This study aimed to use a finite element model to investigate the biomechanical environment within elbow capsule and its surrounding tissues at various stages after anterior capsule injury. Methods: A finite element model of the elbow joint, incorporating muscle activation behavior, was developed to simulate elbow flexion under normal condition (no injury) and at 2, 4, 6 and 8 weeks following anterior joint capsular injury. The model was used to analyze von Mises stress distribution and changes within the elbow tissues. Results: At no injury condition, and 2, 4, 6 and 8 weeks, the stress of the anterior articular capsule at 60° flexion were 2.62, 3.87, 4.40, 4.57 and 5.24 MPa, respectively. Under normal conditions, and at 2, and 4 weeks, the ulnar cartilage attained its peak stress at 75°. In normal conditions, the highest stress in the ulnar cartilage was 1.08 MPa, amounting to 1.02 times and 1.05 times the stress observed at 2 and 4 weeks, respectively. At 4 weeks, compared with 6 weeks, the stress of the anterior bundle at 15, 30, 45 and 60° was reduced by 11.1, 22.6, 37.3 and 36.1%, respectively. At 6 and 8 weeks, the peak stress in the posterior articular capsule reached 11.5 and 11.7 MPa, respectively, showing minimal variation. Conclusions: The results could offer theoretical basis for rehabilitation professionals in treating and preventing elbow capsule contracture.
Czasopismo
Rocznik
Tom
Strony
3--11
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China.
autor
- College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China.
autor
- Department of Traumatic Orthopaedics, Tianjin Hospital, Tianjin, China.
autor
- College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China.
autor
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education.
- School of Biological Sciences and Medical Engineering, Beihang University, Beijing, China.
Bibliografia
- [1] ADOLFSSON L., Post-traumatic stiff elbow, EFORT Open Rev, 2018, 3 (5), 210–216, DOI: 10.1302/2058-5241.3.170062.
- [2] BADIA A., STENNETT C., Sports-related injuries of the elbow, J. Hand Ther., 2006, 19 (2), 206–226, DOI: 10.1197/j.jht.2006.02.006.
- [3] BECK C.M., GLUCK M.J., ZHANG Y., MCGOUGH J.D., REIZNER W., RUBIN T.A., HAUSMAN M.R., Outcomes of Arthroscopic Elbow Contracture Release: Improvement for Severe Prosupination and Flexion Contracture, Arthroscopy, 2022, 38 (2), 315–322, DOI: 10.1016/j.arthro.2021.07.020.
- [4] BUCHLER P., RAMANIRAKA N.A., RAKOTOMANANA L.R., IANNOTTI J.P., FARRON A., A finite element model of the shoulder application to the comparison of normal and osteoarthritic joints, Clin. Biomech., 2002, (9–10), 630–639, DOI: 10.1016/S0268-0033(02)00106-7.
- [5] CALLAWAY G.H., FIELD L.D., DENG X.H., TORZILLI P.A., WARREN R.F., Biomechanical evaluation of the medial collateral ligament of the elbow, J. Bone and Joint Surg. Am., 1997, 79 (8), 1223–1231.
- [6] CAMP C.L., FU M., JAHANDAR H., DESAI V.S., SINATRO A.M., ALTCHEK D.W., DINES J.S., The lateral collateral ligament complex of the elbow quantitative anatomic analysis of the lateral ulnar collateral, radial collateral, and annular ligaments, J. Shoulder Elbow Surg., 2019, 28 (4), 665–670, DOI: 10.1016/j.jse.2018.09.019.
- [7] CARLOCK K.D., BIANCO I.R., KUGELMAN D.N., KONDA S.R., EGOL K.A., Risk Factors for Elbow Joint Contracture After Surgical Repair of Traumatic Elbow Fracture, J. Am. Acad. Orthop. Surg., 2021, 29 (4), e178–187, DOI: 10.5435/jaaos-d-18-00801.
- [8] CHARALAMBOUS C.P., MORREY B.F., Posttraumatic elbow stiffness, J. Bone Joint Surg. Am., 2012, 9, 1428–1437, DOI: 10.2106/JBJS.K.00711.
- [9] CIKES A., JOLLES B.M., FARRON A., Open Elbow Arthrolysis for Posttraumatic Elbow Stiffness, J. Orthop. Traumatol., 2006, 20 (6), 405–409, DOI: 10.1097/00005131-200607000-00007.
- [10] COHEN M.S., SCHIMMEL D., HASTINGS H. 2nd., MUEHLEMAN C., Structural and biochemical evaluation of the elbow capsule after trauma, J. Shoulder Elb. Surg., 2007, 16 (4), 484–490, DOI: 10.1016/j.jse.2006.06.018.
- [11] DEBSKI R.E., WEISS J.A., NEWMAN W.J., MOORE S.M., MCMAHON P.J., Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination, J. Shoulder Elb. Surg., 2005, 14 (1 Suppl. S), 24S–31S, DOI: 10.1016/j.jse.2004.10.003.
- [12] DUNHAM C.L., CASTILE R.M., CHAMBERLAIN A.M., LAKE S.P., The role of periar-ticular soft tissues in persistent motion loss in a rat model of posttrau-matic elbow contracture, J. Bone Joint Surg. Am., 2019, 101, e17(1–7), DOI: 10.2106/JBJS.18.00246.
- [13] FLORIS S., OLSEN B.S., DALSTRA M., SLZRJBIERG J.O., SNEPPEN O., The medial collateral ligament of the elbow joint: Anatomy and kinematics, J. Shoulder Elbow Surg., 1998, 7 (4),345–351, DOI: 10.1016/S1058-2746(98)90021-0.
- [14] GAO Y., GAO B., ZHU H., YU Q., XIE F., CHEN C., LI Q., Adipose-derived stem cells embedded in platelet-rich plasma scaffolds improve the texture of skin grafts in a rat fullthickness wound model, Burns, 2020, 46 (2), 377–385, DOI: 10.1016/j.burns.2019.07. 041.
- [15] HEDENSTIERNA S., HALLDIN P., BROLIN K., Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue, Comput. Method Biomec., 2006, 11 (6), 627–639, DOI: 10.1080/17474230802312516.
- [16] HILDEBRAND K.A., ZHANG M., GERMSCHEID N.M., WANG C, HART D.A., Cellular, matrix, and growth factor components of the articular capsule are modified early in the proces of posttraumatic contracture formation in a rabbit model, Acta Orthop., 2008, 79 (1), 116–125, DOI: 10.1080/17453670710014860.
- [17] HILDEBRAND K.A., ZHANG M., VAN SNELLENBERG W., KING G.J., HART D.A., Myofibroblast numbers are elevated in human elbow capsules after trauma, Clin. Orthop., 2004, 419, 189–197, DOI: 10.1097/00003086-200402000-00031.
- [18] HINZ B., PHAN S.H., THANNICKAL V.J., GALLI A., BOCHATON-PIALLAT M., GABBIANI G., The Myofibroblast: One Function, Multiple Origins, Am. J. Pathol., 2007, 170 (6), 1807–1816, DOI: 10.2353/ajpath.2007.070112.
- [19] JUPITER J.B., O’DRISCOLL S.W., COHEN M.S., The assessment and management of the stiff elbow, Instr. Course Lect., 2003, 52, 93–111.
- [20] KAHMANN S.L., SAS A., GROßE HOKAMP N., VAN LENTHE G.H., MÜLLER L.P., WEGMANN K., A combined experimental and finite element analysis of the human elbow under loads of daily living, J. Biomech., 2023, 158, 111766, DOI: 10.1016/j.jbiomech.2023.111766.
- [21] KODDE L.F., VAN RIJN J., VAN DEN BEKEROM M.P., EYGENDAAL D., Surgical treatment of post-traumatic elbow stiffness: a systematic review, J. Shoulder Elb. Surg., 2013, 22 (4), 574–580, DOI: 10.1016/j.jse.2012.11.010.
- [22] KODEK T., MUNIH M., An analysis of static and dynamic joint torques in elbow flexion-extension movements, Simul. Model Pract. Th., 2003, 11 (3–4), 297–311, DOI: 10.1016/ S1569- 190X(03)00063-7.
- [23] KUMARA V., MISHRAA R.K., KRISHNAPILLAI S., Study of pilot’s comfortness in the cockpit seat of a flight simulator, Int. J. Ind. Ergonom., 2019, 71, 1–7, DOI: 10.1016/j.ergon. 2019.02.004.
- [24] MANSAT P., MORREY B.F., The column procedure: a limited lateral approach for extrinsic contracture of the elbow, J. Bone Joint Surg. Am., 1998, 80 (11), 1603–1615.
- [25] MONIKA P., WAIKER P.V., CHANDRAPRABHA M.N., RANGARAJAN A., CHIDAMBARA K.N., Myofibroblast Progeny in Wound Biology and Wound Healing Studies, Wound Repair Regen., 2021, 29 (4), 531–547, DOI: 10.1111/wrr.12937.
- [26] MONUMENT M.J., HART D.A., SALO P.T., HILDEBRAND K.A., BEFUS A.D., Posttraumatic elbow contractures: targeting neuroinflammatory fibrogenic mechanisms, J. Orthop. Sci., 2013, 18 (6), 869–877, DOI: 10.1007/s00776-013-0447-5.
- [27] O’DRISCOLL S.W., BELL D.F., MORREY B.F., Posterolateral rotatory instability of the elbow, J. Bone Joint Surg. Am., 1991, 73 (3), 440–446.
- [28] RODRIGUEZ-MARTIN J., PRETELL-MAZZINI J., ANDRES- -ESTEBAN E.M., LARRAINZAR-GARIJO R., Outcomes after terrible triads of the elbow treated with the current surgical protocols. A review, International Orthopaedics, 2013, 851–860, DOI: 10.1007/s00264-010-1024-6.
- [29] SHUKLA D.R., GOLAN E., WEISER M.C., NASSER P., CHOUEKA J., HAUSMAN M., The posterior bundle’s effect on posteromedial elbow instability after a transverse coronoid fracture: A biomechanical study, J. Hand Surg. Am., 2018, 43 (4), 381–388, DOI: 10.1016/j.jhsa. 2017.09.018.
- [30] SUNG E.J., CHUN M.H., HONG J.Y., DO K.H., Effects of a resting foot splint in early brain injury patients, Ann. Rehabil. Med., 2016, 40 (1), 135–141, DOI: 10.5535/arm.2016.40.1. 135.
- [31] TAKATORI K., HASHIZUME H., WAKE H., INOUE H., NAGAYAMA N., Analysis of stress distribution in the humeroradial joint, J. Orthop. Sci., 2002, 7 (6), 650–657, DOI: 10.1007/s007760200116.
- [32] TAN J., WU J., Current progress in understanding the molecular pathogenesis of burn scar contracture, Burns Trauma, 2017, 5, 14, DOI: 10.1186/s41038-017-0080-1.
- [33] TRUDEL G., UHTHOFF H.K., BROWN M., Extent and direction of joint motion limitation after prolonged immobility: An experimental study in the rat, Arch. Phys. Med., 1999, 80 (12), 1542–1547, DOI: 10.1016/S0003-9993(99)90328-3.
- [34] VAN DE WATER L., VARNEY S., TOMASEK J.J., Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention, Adv. Wound Care, 2013, 2 (4), 122–141, DOI: 10.1089/wound.2012.0393.
- [35] VELTMAN E.S., DOORNBERG J.N., EYGENDAAL D., VAN DEN BEKEROM M.P., Static progressive versus dynamic splinting for posttraumatic elbow stiffness: a systematic review of 232 patients, Arch. Orthop. Trauma Surg., 2015, 135, 613–617, DOI: 10.1007/s00402-015-2199-5.
- [36] WAHL E.P., LAMPLEY A.J., CHEN A,. ADAMS S.B., NETTLES D.L., RICHARD M.J., Inflammatory cytokines and matrix metalloproteinases in the synovial fluid after intra-articular elbow fracture, J. Shoulder Elb. Surg., 2020, 29 (4), 736–742, DOI: 10.1016/j.jse. 2019.09.024.
- [37] WANG F., WANG H., LI M., JIA S., WANG J., ZHANG J., FAN Y., The role of the joint capsule in the stability of the elbow joint, Med. Biol. Eng. Comput., 2023, 61, 1439–1448, DOI: 10.1007/s11517-023-02774-6.
- [38] ZHANG D., NAZARIAN A., RODRIGUEZ E.K., Post-traumatic elbow stiffness: Pathogenesis and current treatments, Shoulder Elbow, 2020, 12 (1), 38–45, DOI: 10.1177/ 1758573218793903.
- [39] ZHOU Y., ZHANG Q.B., ZHONG H.Z., LIU Y., LI J., LV H., JING J.H., Rabbit Model of Extending Knee Joint Contracture: Progression of Joint Motion Restriction and Subsequent Joint Capsule Changes after Immobilization, J. Knee Surg., 2020, 33 (01), 015–021, DOI: 10.1055/s-0038-1676502.
- [40] ZHUANG Z., YU D., CHEN Z., LIU D., YUAN G., YIRONG N., SUN L., LIU Y., HE R., WANG K., Curcumin Inhibits Joint Contracture through PTEN Demethylation and Targeting PI3K/Akt/mTOR Pathway in Myofibroblasts from Human Joint Capsule, Evid-Based Compl. Alt, 2019, 2019, 1–12, DOI:10.1155/2019/4301238
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0076dfd5-a766-45f7-bee0-0e15cef134f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.