Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a piezoelectric phononic crystal beam at the nanoscale has been mechanically modeled by using the surface piezoelectric theory. The band gap has been calculated by the plane wave expansion method and the band gap structure picture has been analyzed. The influence of electromechanical coupling effects, surface effects and geometry on the band gap properties are discussed separately. This study contributes positively to the design and active control of nanoelectromechanical systems.
Czasopismo
Rocznik
Tom
Strony
19--30
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
autor
- School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
autor
- China Nanhu Academy of Electronics and Information Technology, Jiaxing, China
autor
- China Nanhu Academy of Electronics and Information Technology, Jiaxing, China
Bibliografia
- 1. Aifantis E.C., 1999, Strain gradient interpretation of size effects, International Journal of Fracture, 95, 299-314.
- 2. Cao Y., Hou Z., Liu Y., 2004, Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals, Solid State Communications, 132, 8, 539-543.
- 3. Chen A.-L., Tian L.-Z., Wang Y.-S., 2017, Band structure properties of elastic waves propagating in the nanoscaled nearly periodic layered phononic crystals, Acta Mechanica Solida Sinica, 30, 2, 113-122.
- 4. Chu J., Zhou G., Liang X., Liang H., Yang Z., Chen T., 2023, A metamaterial for low-frequency vibration damping, Materials Today Communications, 36, 106464.
- 5. Du S., Shi D., Deng H., 2000, Special effects and applications of nanostructured materials, Nature Magazine, 22, 2, 101-106.
- 6. Eringen A.C., Edelen D.G.B., 1972, On nonlocal elasticity, International Journal of Engineering Science, 10, 3, 233-248.
- 7. Ghoreshi M., Bahrami A., 2022, Acoustic invisibility cloak based on two-dimensional solid-fluid phononic crystals, Solid State Communications, 342, 114646.
- 8. Gurtin M.E., Weissmüller J., Larché F., 1998, A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A, 78, 5, 1093-1109.
- 9. Gurtin M.E., Murdoch I.A., 1975, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis, 57, 4, 291-323.
- 10. Huang G.-Y., Yu S.-W., 2006, Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring, Physica Status Solidi (B), 243, 4, R22-R24.
- 11. Kong D., Wang N., Wang G., Sheng Z., Zhang Y., 2023, Analytical model of vibro-acoustic coupling between the membrane loaded with concentrated masses and the acoustic cavity, Thin-Walled Structures, 182, 110317.
- 12. Lee D., Youn B.D., Jo S.-H., 2023. Deep-learning-based framework for inverse design of a defective phononic crystal for narrowband filtering, International Journal of Mechanical Sciences, 255, 108474.
- 13. Lu J.-F., Cheng J., Feng Q.-S., 2022, Plane wave finite element model for the 2-D phononic crystal under force loadings, European Journal of Mechanics – A/Solids, 91, 104426.
- 14. Qian D., 2018, Bandgap properties of a piezoelectric phononic crystal nanobeam with surface effect, Journal of Applied Physics, 124, 5, 055101.
- 15. Qian D., Shi Z., 2017, Using PWE/FE method to calculate the band structures of the semi-infinite beam-like PCs: Periodic in z-direction and finite in x-y plane, Physics Letters A, 381, 17, 1516-1524.
- 16. Qian D., Zou P., Zhang J., Chen M., 2022, Tunability of resonator with pre-compressed springs on thermo-magneto-mechanical coupling band gaps of locally resonant phononic crystal nanobeam with surface effects, Mechanical Systems and Signal Processing, 176, 109184.
- 17. Sigalas M.M., Economou E.N., 1992, Elastic and acoustic wave band structure, Journal of Sound and Vibration, 158, 2, 377-382.
- 18. Surana K.S., Joy A.D., Reddy J.N., 2017, Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories, Continuum Mechanics and Thermodynamics, 29, 2, 665-698.
- 19. Yan Z., Jiang L.Y., 2011, The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects, Nanotechnology, 22, 24, 245703.
- 20. Yang F., Chong A.C.M., Lam D.C.C., Tong P., 2002, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39, 10, 2731-2743.
- 21. Yang T., Xiao B., Feng Y., Pei D., Liu Y., Chen M., Jiang H., Zheng Z., Wang Y., 2022, Acoustic edge mode in spiral-based metamaterials at subwavelength scale, Results in Physics, 42, 106008.
- 22. Yao L., Zhang D., Xu K., Dong L., Chen X., 2021, Topological phononic crystal plates with locally resonant elastic wave systems, Applied Acoustics, 177, 107931.
- 23. Yin J., Cai L., Fang X., Xiao Y., Yang H., Zhang H., Zhong J., Zhao H., Yu D., Wen J., 2022, Review on research progress of mechanical metamaterials and their applications in vibration and noise control, Advances in Mechanics, 52, 3, 508-586.
- 24. Zhen N., Wang Y.-S., Zhang C., 2012, Surface/interface effect on band structures of nanosized phononic crystals, Mechanics Research Communications, 46, 81-89.
- 25. Zou Y., Wang Z., Adjei P., Zhao X., 2023, The sound insulation performance of light wood frame construction floor structure based on phononic crystal theory, Journal of Building Engineering, 75, 107039.
- 26. Zuo S., Liu P., Wu X., Zhang Q., Kong Y., Zhou D., 2022, Study on broad flexural wave bandgaps of piezoelectric phononic crystal plates for the vibration and noise attenuation, Thin-Walled Structures, 178, 109481.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0068972e-f20c-4005-94ac-6c039ea9293a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.