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Abstract 

The objects of consideration are thin linearly elastic Kirchhoff-Love-type circular cylindrical shells having a 

periodically microheterogeneous structure in circumferential and axial directions (biperiodic shells). The aim 
of this contribution is to formulate and discuss a new averaged general asymptotic-tolerance model for the 

analysis of selected dynamic problems for the shells under consideration. This model is derived by applying the 

combined modelling which includes two techniques: the asymptotic modelling procedure and a certain extended 
version of the known tolerance non-asymptotic modelling technique based on a new notion of weakly slowly-

varying function. Contrary to the starting exact shell equations with highly oscillating, non-continuous and 

periodic coefficients, governing equations of the averaged combined model have constant coefficients 
depending also on a cell size. The differences between the general combined model proposed here and the 

corresponding known standard combined model derived by means of the more restrictive concept of slowly-

varying functions are discussed. 
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1. Introduction 

There are considered thin linearly elastic Kirchhoff-Love-type circular cylindrical shells 

with a periodically microheterogeneous structure in circumferential and axial directions 

(biperiodic shells), cf. Fig. 1. 

The dynamic problems of such shells are described by partial differential equations 

with highly oscillating, non-continuous, periodic coefficients. Hence, the direct 

application of these equations to investigations of engineering problems is noneffective 

even using computational methods. That is why there exists a number of various modelling 

methods leading to simplified averaged equations with constant coefficients. Periodic 

shells (plates) are usually described using homogenized models derived by means of 

asymptotic methods, cf. [1]. Unfortunately, in the models of this kind the effect of a cell 

size (called the length-scale effect) on the overall shell behaviour is neglected. 

This effect can be taken into account using the tolerance averaging technique, cf. [2]. 

Some applications of this method to the modelling of mechanical and thermomechanical 

problems for various periodic and tolerance-periodic structures are shown in many works. 

The extended list of papers and books on this topic can be found in [2]. We mention here 

monograph by Tomczyk [3], where the length-scale effect in dynamics and stability of 
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periodic cylindrical shells is investigated. In the last years the tolerance averaging 

approach was adopted for non-stationary problems of functionally graded structures, e.g. 

for vibrations of functionally graded thin plates by Kaźmierczak and Jędrysiak [4], for 

dynamics of transversally graded shells by Tomczyk and Szczerba [5]. 

 

Figure 1. Example of biperiodic cylindrical shell 

A certain extended version of the tolerance modelling technique has been proposed by 

Tomczyk and Woźniak in [6]. This version is based on a new notion of weakly slowly-

varying functions which is a certain extension of the well known concept of slowly-varying 

functions, cf. [2, 3]. Applying the concept of weakly slowly-varying functions, the new 

general tolerance and general combined asymptotic-tolerance models of dynamic 

problems for thin cylindrical shells with micro-periodic structure in circumferential 

direction (uniperiodic shells) have been proposed by Tomczyk and Litawska in [7, 8]. 

Moreover, a new general tolerance model of dynamics for thin biperiodic shells derived 

by means of the notion of weakly slowly-varying functions has been presented by Tomczyk 

and Litawska in [9]. The models mentioned above are certain generalizations of the 

corresponding standard models proposed in [3], which have been obtained by using the 

classical concept of slowly-varying functions. 

The aim of this contribution is to formulate and discuss a new averaged general 

combined asymptotic-tolerance model for the analysis of selected dynamic problems for 

the biperiodic shells under consideration. The model will be derived by applying the 

combined modelling which includes two techniques: the consistent asymptotic modelling 

procedure given by Woźniak [2] and the extended tolerance non-asymptotic modelling 

technique proposed by Tomczyk and Woźniak [6]. Governing equations of the combined 

model have constant coefficients depending also on a cell size. The differences between 

the general combined model proposed here and the corresponding known standard 
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combined model presented by Tomczyk in [3] and derived by means of the more restrictive 

notion of slowly-varying functions will be discussed. 

2. Starting equations 

We assume that 
1x  and 

2x  are coordinates parametrizing the shell midsurface M in 

circumferential and axial directions, respectively. We denote 

),0(),0(),( 21
21 LLxx x , where 21, LL  are length dimensions of M, cf. Fig. 1. Let 

321 xxxO  stand for a Cartesian orthogonal coordinate system in the physical space 3R  

and denote ),,( 321 xxxx . A cylindrical shell midsurface M is given by 

     21213 ,,,: xxxxRM rxx , where )(r  is the smooth function such that 

021  xx /r/r , 111  xx /r/r , 122  xx /r/r . It means that on M the 

orthonormal parametrization is introduced. Sub- and superscripts ,, … run over 1,2 and 

are related to 
21, xx , summation convention holds. Partial differentiation related to 

x  is 

represented by  . Moreover, it is denoted   ...... . Let 
a  stand for the 

midsurface first metric tensor. The time coordinate is denoted by ],[ 10 ttt  . Let )(xd

, r  stand for the shell thickness and the midsurface curvature radius, respectively. 

Let 1l  and 2l  be the period lengths of the shell structure respectively in 
1x - and 

2x

- directions. Define the basic cell ]2/,2/[]2/,2/[ 2211 llll . The diameter 

2/12
2

2
1 ])()[( lll  of   is assumed to satisfy conditions: ,1/ max l d  1/ l r  and 

1),min(/ 21 l LL . Hence, the diameter will be called the microstructure length 

parameter. 

Denote by ),( tuu x  , ),( tww x , x , t , the shell displacements in 

directions tangent and normal to M , respectively. Elastic properties of the shell are 

described by shell stiffness tensors )(xD , )(xB . Let )(x  stand for a shell mass 

density per midsurface unit area. The external forces will be neglected. 

It is assumed that the behaviour of the shell under consideration is described by the 

action functional determined by lagrangian L being a highly oscillating function with 

respect to x and having the well-known form 
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Applying the principle of stationary action we arrive at the system of Euler-Lagrange 

equations, which can be written in an explicit form as 
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It can observed that equations (2) coincide with the well-known governing equations 

of Kirchhoff-Love theory of thin elastic shells. For periodic shells, coefficients 

 )(xD , )(xB , )(x  of (1) and (2) are highly oscillating, non-continuous and λ-

periodic functions. Applying the combined asymptotic-tolerance modelling technique to 

lagrangian (1), we will derive the averaged model equations with constant coefficients 

depending also on a cell size. The combined modelling under consideration includes two 

techniques: the consistent asymptotic modelling procedure given in [2] and an extended 

version of the known tolerance non-asymptotic modelling technique based on a new notion 

of weakly slowly-varying function proposed by Tomczyk and Woźniak in [6]. 

3. Modelling procedure, equations of combined model 

The combined modelling technique used to starting lagrangian (1) is realized in two steps. 

The first step is based on the consistent asymptotic averaging of lagrangian (1) under the 

consistent asymptotic decomposition of fields u , w  in I)(  x , x  
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where ,...,2,1,/1  mm    xx)( , )2/,2/()2/,2/( 2211 llll . 

Unknown functions 
00 , wu  and WU ,  in (3) are assumed to be continuous and 

bounded in  . Unknowns 
00 , wu and WU ,  are called macrodisplacements and 

fluctuation amplitudes, respectively. They are independent of  . Functions 

)/()(  zz hh  and )/()(  zz gg  in (3) are highly oscillating  -periodic fluctuation 

shape functions. They are assumed to be known in every problem under consideration. In 

this work, they have to satisfy conditions: )(lOh , )(ll  Oh , )( 2lOg , 

),( 2ll  Og  )( 22 ll  Og , 0
11

)()(








 xx

zz gdhd . 

Introducing decomposition (3) into (1), under weak limit passage 0  we obtain the 

averaged form of lagrangian (1). Then, applying the principle of stationary action we 

arrive at the governing equations of consistent asymptotic model for the periodic shells 

under consideration. These equations consist of partial differential equations for 

macrodisplacements 
00 ,wu  coupled with linear algebraic equations for fluctuation 

amplitudes WU , . After eliminating fluctuation amplitudes from the governing equations 

by means of 
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where  


 hDhG ,  


 gBE , we arrive finally at the asymptotic 

model equations expressed only in macrodisplacements 00 ,wu  
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where  
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Coefficients of equations (5) are constant but they are independent of the 

microstructure cell size. Hence, this model is not able to describe the length-scale effect 

on the overall shell dynamics and it will be referred to as the macroscopic model. 

In the first step of combined modelling it is assumed that within the asymptotic model, 

solutions 
00 ,wu  to the problem under consideration are known. Hence, there are also 

known functions   hUuu 0
0  and Wgww  0

0 , where WU ,  are given by means of 

(4). 

The second step is based on the tolerance averaging of lagrangian (1) under so-called 

superimposed decomposition. 

The fundamental concepts of the tolerance approach under consideration are those of 

two tolerance relations between points and real numbers determined by tolerance 

parameters, weakly slowly-varying functions, tolerance-periodic functions, fluctuation 

shape functions and the averaging operation, cf. [2, 3, 6]. 

A continuous, bounded and differentiable function )(F  defined in ],0[],0[ 21 LL   

is called weakly slowly-varying of the R-th kind with respect to cell   and tolerance 

parameters  , ),(  
RWSVF , if it can be treated (together with its derivatives up to 

the R-th order) as constant on an arbitrary cell. Nonnegative integer R is assumed to be 

specified in every problem under consideration. Note, that the main difference between 

the weakly slowly-varying and the well-known slowly-varying functions is that the 

products of derivatives of weakly slowly-varying functions and microstructure length 

parameter l  are not treated as negligibly small. 

An integrable and bounded function )(f  defined in   is called tolerance-periodic 

of the R-th kind with respect to cell   and tolerance parameters  , ),(  
RTPf , if it 

can be treated (together with its derivatives up to the R-th order) as periodic on a cell. 
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Let )(xf , x , be an integrable and bounded function in  . The averaging 

operation of )(f  is defined by 

             .,)(,)(
1

)(

)(
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xxzzzx

x

dff  (7) 

It can be seen that if )(f  is  -periodic then  f  is constant, 

The tolerance modelling is based on two assumptions. The first of them is called the 

tolerance averaging approximation (tolerance relations which make it possible to neglect 

terms of an order of tolerance parameters  ), cf. [6]. The second one is termed the micro-

macro decomposition. In the problem under consideration, we introduce the extra micro-

macro decomposition superimposed on the known solutions 00 , wu   obtained within the 

macroscopic model 

         ,),()(),(),(,),()(),(),( 00 tVbtwtwtQctutu bc xxxxxxxx    (8) 

where fluctuation amplitudes VQ ,  are the new weakly slowly-varying unknowns, i.e. 

),(1   WSVQ , ),(2  WSVV . Functions )(c  and )(b  are the new periodic, 

continuous and highly-oscillating fluctuation shape functions which are assumed to be 

known in every problem under consideration. These functions have to satisfy conditions: 

)(lOc , )(ll  Oc , )( 2lOb , ),( 2ll  Ob  )( 22 ll  Ob , 0 bc . 

We substitute the right-hand sides of (8) into (1). The resulting lagrangian is denoted 

by cbL . Then, we average cbL  over cell   using averaging formula (7) and applying the 

tolerance averaging approximation. As a result we obtain function  cbL  called the 

tolerance averaging of starting lagrangian (1) in   under superimposed decomposition 

(8). Then, applying the principle of stationary action, under the extra approximation 

1/1 l r , we arrive at the system of Euler-Lagrange equations for VQ , , which can 

be written in an explicit form as 
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Equations (9) and (10) together with the micro-macro decomposition (8) constitute the 

superimposed microscopic model. Coefficients of the derived model equations are 

constant and some of them depend on a cell size λ (underlined terms). The right-hand sides 

of (9) and (10) are known under assumption that 00 , wu   were determined in the first step 
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of modelling. The basic unknowns VQ , of the model equations must be the weakly 

slowly-varying functions in  periodicity directions, i.e. ),(1   WSVQ , 

),(2  WSVV . This requirement can be verified only a posteriori and it determines the 

range of the physical applicability of the model. 

Summarizing results obtained above, we conclude that the general combined 

asymptotic-tolerance model of selected dynamic problems for the biperiodic shells under 

consideration derived here is represented by: 

a) Macroscopic model defined by equations (5) for 00 ,wu  with expressions (4) for 

WU , , formulated by means of the consistent asymptotic modelling and being 

independent of the microstructure length. Unknowns of this model must be continuous 

and bounded functions in x. 

b) Superimposed microscopic model equations (9), (10) derived by means of an 

extended version of the tolerance (non-asymptotic) modelling and having constant 

coefficients depending also on a cell size l  (underlined terms) as well as combined with 

the macroscopic model equations under assumption that in the framework of the 

asymptotic model the solutions to the problem under consideration are known. Unknown 

fluctuation amplitudes of this model must be weakly slowly-varying functions in x. 

c) Decomposition 
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where functions WwUu ,,, 00
  have to be obtained in the first step of combined 

modelling, i.e. in the framework of the consistent asymptotic modelling. 

It can be shown, cf. [3], that under assumption that fluctuation shape functions )(xh , 

)(xg  of macroscopic model coincide with fluctuation shape functions )(xc , )(xb  of 

microscopic model, we can obtain microscopic model equations (9), (10) in which )(c  

and )(b  are replaced by )(h  and )(g , respectively, and in which the right-hand sides 

are equal to zero. In this case equations (9), (10) are independent of the solutions obtained 

in the framework of the macroscopic model. It means, that an important advantage of the 

combined model is that it makes it possible to describe selected problems of the shell 

micro-dynamics (e.g. the free micro-vibrations) independently of the shell macro-

dynamics. 

Let us compare the general combined model proposed here with the corresponding 

known standard combined model presented and discussed in [3], which was derived under 

assumption that the unknown fluctuation amplitudes ),(),,( tVtQ xx  in micro-macro 

decomposition (8) are slowly-varying. We recall that the main difference between the 

weakly slowly-varying and the well-known slowly-varying functions is that the products 

of derivatives of weakly slowly-varying functions and microstructure length parameter l  

are not treated as negligibly small. Following [3], the standard combined asymptotic-

tolerance model consists of: 
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a) Macroscopic model defined by equations (5) for 
00 ,wu  with expressions (4) for 

WU , . It is assumed that in the framework of this model the solutions to the problem 

under consideration are known. 

b) Superimposed microscopic model equations (9), (10) without the doubly 

underlined terms. 

c) Decomposition (11), in which the weakly slowly-varying functions are replaced 

by slowly-varying functions. 

From comparison of both the general and the standard combined models it follows that 

the general model equations contain a bigger number of terms depending on the 

microstructure size than the standard model equations. Thus, the general model proposed 

here makes it possible to investigate the length-scale effect in more detail. 

4. Final remarks 

The combined asymptotic-tolerance modelling technique based on the notion of weakly 

slowly-varying function, cf. [6], is proposed as a tool to derive a new mathematical 

averaged model for the analysis of selected dynamic problems for thin cylindrical shells 

with micro-periodic structure in circumferential and axial directions. 

Contrary to exact shell equations (2) with highly oscillating, non-continuous and 

periodic coefficients, the governing equations (5), (9), (10) of the general combined 

asymptotic-tolerance model have constant coefficients depending also on a cell size. 

Hence, this model makes it possible to describe the effect of a length scale on the global 

shell behaviour. 

The main advantage of the combined model is that it makes it possible to separate the 

macroscopic description of some special dynamic problems from their microscopic 

description. 

Some applications of this new model will be shown in forthcoming papers. 
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