PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Pressure acid leaching of sphalerite concentrate. Modeling and optimization by response surface methodology

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The zinc leaching from sphalerite concentrate using oxygen under pressure in sulfuric acid solution was primarily studied and evaluated. The effects of important leaching parameters such as oxygen partial pressure, temperature, solid/liquid ratio and leaching time on leaching efficiency, Zn concentration and Fe extraction were investigated. Response surface methodology based on central composite rotatable design technique was used to optimize the leaching process parameters in order to obtain a suitable leach solution with high Zn leaching efficiency considering further processes such as precipitation of contaminating metal ions and electrolysis. The optimum leaching condition for maximum Zn leaching efficiency and Zn concentration with minimum Fe extraction was determined as follows: oxygen partial pressure of 12 bars, temperature of 150 °C, solid/liquid ratio of 0.20 and leaching time of 89.16 minutes. The achieved experimental results for Zn leaching efficiency, Zn concentration and Fe extraction under the optimum conditions were as 94%, 80 g/dm3 and 8.1% respectively. The experimental results corresponded well with the predicted results of quadratic polynomial models.
Rocznik
Strony
479--496
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Dokuz Eylul University, Faculty of Engineering, Mining Engineering Department, 35390, Buca, Izmir, Turkey
Bibliografia
  • ACHARYA, S., ANAND, S., DAS, R.P., 1992, Iron rejection through jarosite precipitation during acid pressure leaching of zinc leach residue. Hydrometallurgy, 31(1-2), 101-110.
  • AGHAIE, E., PAZOUKI, M., HOSSEINI, M.R., RANJBAR, M., GHAVIPANJEH, F., 2009, Response surface methodology (RSM) analysis of organic acid production for kaolin beneficiation by Aspergillus niger. Chemical Engineering Journal, 147(2-3), 245-251.
  • ALFANTAZI, A.M., DREISINGER, D.B., 2001, The role of zinc and sulfuric acid concentrations on zinc electrowinning from industrial sulfate based electrolyte. J Appl Electrochem, 31(6), 641-646.
  • AU-YEUNG, S.C.F., BOLTON, G.L., 1986. Iron control in the processes developed at Sherritt Gordon Mines, In International Symposium on Iron Control in Hydrometallurgy, eds. Dutrizac, J. E., Monhemius, A. J. E. Horwood Toronto, Ont., pp. 131-151.
  • BABU, M.N., SAHU, K.K., PANDEY, B.D., 2002, Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium, sodium and potassium persulphates. Hydrometallurgy, 64(2), 119-129.
  • BALAZ, P., EBERT, I., 1991, Oxidative leaching of mechanically activated sphalerite. Hydrometallurgy, 27(2), 141-150.
  • BALDWIN, S.A., DEMOPOULOS, G.P., 1995, Assessment of alternative iron sources in the pressure leaching of zinc concentrates using a reactor model. Hydrometallurgy, 39(1-3), 147-162.
  • COPUR, M., 2002, An optimization study of dissolution of Zn and Cu in ZnS concentrate with HNO3 solutions. Chemical and Biochemical Engineering Quarterly, 16(4), 191-197.
  • CRUNDWELL, F.K., 1987, Kinetics and mechanisms of the oxidative dissolution of a zinc sulphide concentrate in ferric sulphate solutions. Hydrometallurgy, 19(2), 227-242.
  • CRUNDWELL, F.K., 1988, Effect of iron impurity in zinc sulfide concentrates on the rate of dissolution. AIChE Journal, 34(7), 1128-1134.
  • CRUNDWELL, F.K., 1998, The indirect mechanism of bacterial leaching. Mineral Processing and Extractive Metallurgy Review, 19(1), 117-128.
  • CRUNDWELL, F.K., 2013, The dissolution and leaching of minerals. Hydrometallurgy, 139, 132-148.
  • DA SILVA, G., 2004, Relative importance of diffusion and reaction control during the bacterial and ferric sulphate leaching of zinc sulphide. Hydrometallurgy, 73(3-4), 313-324.
  • DEHGHAN, R., NOAPARAST, M., KOLAHDOOZAN, M., MOUSAVI, S.M., 2008, Statistical evaluation and optimization of factors affecting the leaching performance of a sphalerite concentrate. International Journal of Mineral Processing, 89(1-4), 9-16.
  • DUTRIZAC, J.E., 1992, The leaching of sulphide minerals in chloride media. Hydrometallurgy, 29(1-3), 1-45.
  • DUTRIZAC, J.E., JAMBOR, J.L., 2000, Jarosites and their application in hydrometallurgy. Rev Mineral Geochem, 40, 405-452.
  • FILIPPOU, D., 2004, Hydrometallurgical processes for the primary processing of zinc. Mineral Processing and Extractive Metallurgy Review, 25(3), 205-252.
  • GOMEZ, C., LIMPO, J.L., DELUIS, A., BLAZQUEZ, M.L., GONZALEZ, F., BALLESTER, A., 1997, Hydrometallurgy of bulk concentrates of Spanish complex sulphides: Chemical and bacterial leaching. Can Metall Quart, 36(1), 15-23.
  • GU, Y., ZHANG, T.A., LIU, Y., MU, W.Z., ZHANG, W.G., DOU, Z.H., JIANG, X.L., 2010, Pressure acid leaching of zinc sulfide concentrate. T Nonferr Metal Soc, 20, S136-S140.
  • HAGHSHENAS, D.F., BONAKDARPOUR, B., ALAMDARI, E.K., NASERNEJAD, B., 2012, Optimization of physicochemical parameters for bioleaching of sphalerite by Acidithiobacillus ferrooxidans using shaking bioreactors. Hydrometallurgy, 111, 22-28.
  • HARVEY, T.J., YEN, W.T., PATERSON, J.G., 1993, A kinetic investigation into the pressure oxidation of sphalerite from a complex concentrate. Minerals Engineering, 6(8-10), 949-967.
  • JAN, R.J., HEPWORTH, M.T., FOX, V.G., 1976, A kinetic study on the pressure leaching of sphalerite. Metallurgical Transactions B, 7(3), 353-361.
  • JIN, Z.M., WARREN, G.W., HENEIN, H., 1993, An Investigation of the electrochemical nature of the ferric-chloride leaching of sphalerite. International Journal of Mineral Processing, 37(3-4), 223-238.
  • KAYA, S., TOPKAYA, Y.A., 2011, High pressure acid leaching of a refractory lateritic nickel ore. Minerals Engineering, 24(11), 1188-1197.
  • LI, C.X., WEI, C., XU, H.S., LI, M.T., LI, X.B., DENG, Z.G., FAN, G., 2010a, Oxidative pressure leaching of sphalerite concentrate with high indium and iron content in sulfuric acid medium. Hydrometallurgy, 102(1-4), 91-94.
  • LI, D., PARK, K.H., WU, Z., GUO, X.Y., 2010b, Response surface design for nickel recovery from laterite by sulfation-roasting-leaching process. T Nonferr Metal Soc, 20, S92-S96.
  • LIU, J., WEN, S.M., LIU, D., LV, M.Y., LIU, L.J., 2011, Response surface methodology for optimization of copper leaching from a low-grade flotation middling. Miner Metall Proc, 28(3), 139-145.
  • MAHON, M., PENG, S., ALFANTAZI, A., 2014, Application and optimisation studies of a zinc electrowinning process simulation. Can J Chem Eng, 92(4), 633-642.
  • MASSACCI, P., RECINELLA, M., PIGA, L., 1998, Factorial experiments for selective leaching of zinc sulphide in ferric sulphate media. International Journal of Mineral Processing, 53(4), 213-224.
  • OZBERK, E., CHALKLEY, M.E., COLLINS, M.J., MASTERS, I.M., 1995, Commercial applications of the sherritt zinc pressure leach process and iron disposal. Mineral Processing and Extractive Metallurgy Review, 15(1-4), 115-133.
  • PALENCIA PEREZ, I., DUTRIZAC, J.E., 1991, The effect of the iron content of sphalerite on its rate of dissolution in ferric sulphate and ferric chloride media. Hydrometallurgy, 26(2), 211-232.
  • RAO, K.S., PARAMGURU, R.K., 1998, Dissolution of sphalerite (ZnS) in acidic ferric sulfate solution in the presence of manganese dioxide. Miner Metall Proc, 15(1), 29-34.
  • REID, M., PAPANGELAKIS, V.G., 2006. New data on hematite solubility in sulphuric acid solutions from 130 to 270°C, In Iron Control Technologies, eds. Dutrizac, J. E., Riveros, P. A. Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, QC, pp. 673-686.
  • SANTOS, S.M.C., MACHADO, R.M., CORREIA, M.J.N., REIS, M.T.A., ISMAEL, M.R.C., CARVALHO, J.M.R., 2010, Ferric sulphate/chloride leaching of zinc and minor elements from a sphalerite concentrate. Minerals Engineering, 23(8), 606-615.
  • SINCLAIR, R.J., 2005, The extractive metallurgy of zinc. The Australasian Institute of Mining and Metallurgy, Australia.
  • TOZAWA, K., SASAKI, K., 1986. Effect of coexisting sulphates on precipitation of ferric oxide from ferric sulphate solutions at elevated temperatures, In Iron Control in Hydrometallurgy, eds. Dutrizac, J. E., Monhemius, A. J. Ellis Horwood Limited, Toronto, ON, pp. 454-476.
  • VERBAAN, B., CRUNDWELL, F.K., 1986, An electrochemical model for the leaching of a sphalerite concentrate. Hydrometallurgy, 16(3), 345-359.
  • WADSWORTH, M.E., 1972, Advances in the leaching of sulphide minerals. Miner. Sci. Eng., 4(4), 36-47.
  • XIE, K.Q., YANG, X.W., WANG, J.K., YAN, J.F., SHEN, Q.F., 2007, Kinetic study on pressure leaching of high iron sphalerite concentrate. T Nonferr Metal Soc, 17(1), 187-194.
  • YAZICI, E.Y., DEVECI, H., 2014, Ferric sulphate leaching of metals from waste printed circuit boards. International Journal of Mineral Processing, 133, 39-45.
  • YUE, G., ZHAO, L., OLVERA, O.G., ASSELIN, E., 2014, Speciation of the H2SO4–Fe2(SO4)3–FeSO4–H2O system and development of an expression to predict the redox potential of the Fe3+/Fe2+ couple up to 150°C. Hydrometallurgy, 147-148, 196-209.
  • ZHANG, C.L., ZHAO, Y.C., GUO, C.X., HUANG, X., LI, H.J., 2008, Leaching of zinc sulfide in alkaline solution via chemical conversion with lead carbonate. Hydrometallurgy, 90(1), 19-25.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą nauki.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00624ecb-3699-40c5-82a8-d74513e97e13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.