PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of Operation and Safety of Global Baltic Network of Critical Infrastructure Networks (GBNCIN) with Considering Climate-Weather Change Process (C-WCP) influence – Maximizing GBNCIN Lifetime in the Set of Safety States not worse than a Critical Safety State

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of the GBNCIN operation and safety, with considering the climate-weather change process, safety optimization. Basic characteristics of the critical infrastructure operation process related to climateweather change process are shown. Then, optimal transient probabilities of the GBNCIN Operation Process at Operation States Related to Climate-Weather Change Process, and the GBNCIN optimal safety and resilience indicators, are introduced. By defining unconditional multistate safety function of the GBNCIN, and corresponding optimal risk function, the optimal coefficients of the operation process related to the climateweather change impact on the GBNCIN intensities of degradation, have been determined. Finally, optimal sojourn times of the GBNCIN operation process at operation states, related to climate-weather change process and operation strategy, are presented.
Rocznik
Strony
17--26
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Maritime University, Gdynia, Poland
  • Maritime University, Gdynia, Poland
Bibliografia
  • 1. Dziula P. (2015). Selected aspects of acts of law concerning critical infrastructure protection within the Baltic Sea area, Scientific Journals of the Maritime University of Szczecin, Vol. 44, No 116, 173-181.
  • 2. EU-CIRCLE Report D1.4-GMU2. (2016). Selected critical infrastructures at the Southern Baltic Sea area and its surroundings identification and their parameters analysis - port, maritime transport and information critical infrastructures network defining.
  • 3. EU-CIRCLE Report D2.1-GMU2. (2016). Modelling outside dependences influence on Critical Infrastructure Safety (CIS) – Modelling Critical Infrastructure Operation Process (CIOP) including Operating Environment Threats (OET).
  • 4. EU-CIRCLE Report D2.1-GMU3. (2016). Modelling outside dependences influence on Critical Infrastructure Safety (CIS) – Modelling Climate-Weather Change Process (C-WCP) including Extreme Weather Events (EWE).
  • 5. EU-CIRCLE Report D2.1-GMU4. (2016). Modelling outside dependences influence on Critical Infrastructure Safety (CIS) - Designing Critical Infrastructure Operation Process General Model (CIOPGM) related to Operating Environment Threats (OET) and Extreme Weather Events (EWE) by linking CIOP and C-WCP models.
  • 6. EU-CIRCLE Report D2.2-GMU4. (2016). Modeling the operation process of the Baltic Sea critical infrastructures general network of interconnected and interdependent critical infrastructures located within the Baltic Sea and ashore around that function collaboratively using the Critical Infrastructure Operation Process General Model (CIOPGM) related to Operating Environment Threats (OET) and Extreme Weather Events (EWE) in its operating environment (“network of networks” approach).
  • 7. EU-CIRCLE Report D2.3-GMU1. (2016). Identification methods and procedures of Critical Infrastructure Operation Process (CIOP) including Operating Environment Threats (OET).
  • 8. EU-CIRCLE Report D2.3-GMU2. (2016). Identification methods and procedures of ClimateWeather Change Process (C-WCP) including Extreme Weather Events (EWE).
  • 9. EU-CIRCLE Report D2.3-GMU3. (2016). Identification methods and procedures of unknown parameters of Critical Infrastructure Operation Process General Model (CIOPGM) related to Operating Environment Threats (OET) and Extreme Weather Events.
  • 10. EU-CIRCLE Report D2.3-GMU7. (2016). Evaluation of unknown parameters of the Baltic Sea critical infrastructures global/general network (“network of networks”) of interconnected and interdependent critical infrastructures located within the Baltic Sea and ashore around that function collaboratively using the Critical Infrastructure Operation Process General Model (CIOPGM) related to Operating Environment Threats (OET) and Extreme Wheather Events (EWE) in its operating environment.
  • 11. EU-CIRCLE Report D3.3. (2017). Critical Infrastructure Safety and Resilience Indicators.
  • 12. European Union, European Commission. (2013). Commission Staff working document: Climate change adaptation, coastal and marine issues, SWD(2013) 133 final. Brussels.
  • 13. European Union, European Commission. (2013). Commission Staff working document: Adapting infrastructure to climate change, SWD(2013) 137 final. Brussels.
  • 14. Grabski F. (2015). Semi-Markov Processes: Applications in System Reliability and Maintenance. Elsevier.
  • 15. Klabjan D., Adelman D. (2006). Existence of optimal policies for semi-Markov decision processes using duality for infinite linear programming. Siam Journal on Control and Optimization, Vol. 44, No. 6, 2104-2122.
  • 16. Kołowrocki K., Soszyńska-Budny J. (2011). Reliability and Safety of Complex Technical Systems and Processes: Modeling - Identification - Prediction - Optimization. Springer, London, Dordrecht, Heildeberg, New York.
  • 17. Limnios N., Oprisan G. (2005). Semi-Markov Processes and Reliability. Birkhauser, Boston. Mercier S. (2008). Numerical bounds for semiMarkovian quantities and application to reliability.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00619ed7-0bb4-4489-9a25-e1344f3f7d5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.