PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spit bar deposits from the Upper Cretaceous (Cenomanian) transgressive sequence in NE Bohemia (Czechia)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose a spit bar setting as the possible palaeoenvironment of the basal Late Cretaceous transgressive sequence in NW Bohemia. A new Cenomanian transgression model for the Bohemian Basin is also proposed. The uppermost Devět Křížů Sandstone, which has been conventionally referred to the Bohdašín Formation, probably represents the middle or lower upper Cenomanian (Upper Cretaceous), not the Triassic as previously supposed. We assume that this controversial unit was deposited before the main latest Cenomanian–early Turonian transgression. The spit bars were likely overgrown by vascular plants during their emergence in the late Cenomanian, and then inundated during the latest Cenomanian and early Turonian transgressive phases. The studied deposits had been intensively bioturbated, and the cf. Taenidium suite was recognized for the first time in them alongside the Thalassinoides assemblage (T. paradoxicus, T. suevicus, Thalassinoides isp., cf. Thalassinoides), which are characteristic of the Scoyenia and Glossifungites ichnofacies, respectively. The bioturbated, rhizolith-bearing horizon was presumably a paleosol.
Rocznik
Strony
art. no. e9
Opis fizyczny
Bibliogr. 216 poz., rys., tab., wykr.
Twórcy
  • Institute of Geological Sciences, University of Wrocław
  • Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology
Bibliografia
  • 1. Abdel-Fattah, Z.A. and Gingras, M.K. 2020. Origin of compound biogenic sedimentary structures in Eocene strata of Wadi El-Hitan iniversal heritage area, Fayum, Egypt: Mangrove roots or not? Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110048.
  • 2. Abdel-Fattah, Z.A., Gingras, M.K., Caldwell, M.W. and Pemberton, S.G. 2010. Sedimentary environments and depositional characteristics of the Middle to Upper Eocene whale-bearing succession in the Fayum Depression, Egypt. Sedimentology, 57, 446–476.
  • 3. Abdel-Fattah, Z.A., Gingras, M.K., Caldwell, M.W., Pemberton, S.G. and MacEachern, J.A. 2016. The Glossifungites Ichnofacies and Sequence Stratigraphic Analysis: A Case Study from Middle to Upper Eocene Successions in Fayum, Egypt. Ichnos, 23, 157–179.
  • 4. Aleksandrowski, P., Śliwiński, W. and Wojewoda, J. 1986. Frontally and surficially fluidized slump to debris flow sheets in an alluvial sequence, Lower Permian, Intrasudetic Basin. In: Teisseyre A.K. (Ed.), IAS 7th European Regional Meeting, Excursion Guidebook, Kraków-Poland. Ossolineum, Wroclaw. Excursion A-1, 9–29.
  • 5. Allard, J., Bertin, X., Chaumillon, E. and Pouget, F. 2008. Sand spit rhythmic development: A potential record of wave climate variations? Arçay Spit, western coast of France. Marine Geology, 253, 107–131.
  • 6. Ashton, A.D., Murray, A.B. and Littlewood, R. 2007. The Response of Spit Shapes to Wave-Angle Climates. In: Kraus, N.C. and Rosati, J.D. (Eds), Coastal sediments ’07 – Proceedings of the 6 th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, May 13–17, 2007, 351–363. American Society of Civil Engineers (ASCE); New Orleans, Louisiana, USA.
  • 7. Averianov, A. and Ekrt, B. 2015. Cretornis hlavaci Frič, 1881 from the Upper Cretaceous of Czech Republic (Pterosauria, Azhdarchoidea). Cretaceous Research, 55, 164–175.
  • 8. Badawy, H.S. 2018. Termite nests, rhizoliths and pedotypes of the Oligocene fluviomarine rock sequence in northern Egypt: Proxies for Tethyan tropical palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 492, 161–176.
  • 9. Basyuni, M., Oku, H., Baba, S., Tokara, K. and Iwasaki, H. 2007. Isoprenoids of Okinawan mangroves as Lipid Input into Estuarine Ecosystem. Journal of Oceanography, 63, 601–608.
  • 10. Bengtson, S., Rasmussen, B., Zi, J.-W., Fletcher, I.R., Gehling, J.G. and Runnegar, B. 2021. Eocene animal trace fopssils in 1.7.-billion-year-old metaquartzites. The Proceedings of the National Academy of Sciences PNAS, 118, 40 e2105707118.
  • 11. Beni, A.N., Lahijani, H., Moussavi Harami, R., Leroy, S.A.G., Shah-Hosseini, M., Kabiri, K. and Tavakoli, V. 2013. Development of spit–lagoon complexes in response to Little Ice Age rapid sea-level changes in the central Guilan coast, South Caspian Sea, Iran. Geomorphology, 187, 11–26.
  • 12. Berry, M.E. and Staub, J.R. 1993. Root traces and the identification of paleosols. INQUA Paleopedology Comission Newsletter, 9, 11–13.
  • 13. Bertling, M., Braady, S., Bromley, R.G., Demathieu, G.R., Genise, J., Mikuláš, R., Nielsen, J.K., Nielsen, K.S.S., Rindsberg, A.K., Schlirf, M. and Uchman, A. 2006. Names for trace fossils: A uniform approach. Lethaia, 39, 265–286.
  • 14. Bertling, M., Buatois, L.A., Knaust, D., Laing, B., Mángano, M.G., Meyer, N., Mikuláš, R., Minter, N.J., Neumann, C., Rindsberg, A.K., Uchman, A. and Wisshak, M. 2022. Names for trace fossils 2.0: theory and practice in ichnotaxonomy. Lethaia Review, 55, 1–19.
  • 15. Bhattacharya, B., Banerjee, S. and Bandyopadhyay, S. 2016. Glossifungites ichnofabric signifying Crustacean colonization in early Permian barakar Formation, Talchir Coalbasin, India. Current Science, 110, 86–91.
  • 16. Billy, J., Robin, N., J. Hein, C.J., Certain, R., and FitzGerald, D.M. 2014. Internal architecture of mixed sand-and-gravel beach ridges: Miquelon-Langlade Barrier, NW Atlantic. Marine Geology, 357, 53–71.
  • 17. Boer, P. de and Carr, A.P. 1969. Early Maps as Historical Evidence for Coastal Change. The Geographical Journal, 135, 17–39.
  • 18. Bojanowski, M.J., Jaroszewicz, E., Kosir, A., Łoziński, M., Marynowski, L., Wysocka, A. and Derkowski, A. 2016. Root-related rhodochrosite and concretionary siderite formation in oxygen-deficient conditions induced by a ground-water table rise. Sedimentology, 63, 523–551.
  • 19. Boyd, C. and McIlroy, D. 2017. Three-dimensional morphology of Beaconites capronus from Northeast England. Ichnos, 24, 250–258.
  • 20. Bradshaw, M. 1981. Paleoenvironmental interpretation and systematics of Devonian trace fossils from the Taylor Group (lower Beacon Supergroup), Antarctica. New Zealand Journal of Geology and Geophysics, 24, 615–652.
  • 21. Bromley, R.G. 1996. Trace Fossils. Biology. Taphonomy and Applications, 378 pp. Chapman and Hall; London.
  • 22. Bromley, R.G. and Ekdale, A.A. 1986. Composite ichnofabrics and tiering of burrows. Geological Magazine, 123, 59–65.
  • 23. Buynevich, I.V., Bitinas, A. and Pupienis, D. 2007. Lithological anomalies in a relict coastal dune: Geophysical and paleoenvironmental markers. Geophysical Research Letters, 34, L90707.
  • 24. Čech, S. 2011. Palaeogeography and stratigraphy of the Bohemian Cretaceous Basin (Czech Republic) – an overview. Geologické výzkumy na Moravé a ve Slezsku, 2011 (1), 18–21.
  • 25. Čech, S., Prouza, V., Mikuláš, R., Souček, M., Stárková, M., Rapprich, V. and Gürtlerová, P. 2018. Napříč Broumovským výbězkem. Česká geologická společnost. Exkurze Ceské geologické společnosti, 44. ISBN 978-80-87487-22-8.
  • 26. Chakraborty, A., Hasiotis, S.T., Ghosh, B. and Bhattacharya, H.N. 2013. Fluvial trace fossils in the Middle Siwalik (Sarmatian–Pontian) of Darjeeling Himalayas, India. Journal of Earth System Science, 122, 1023–1033.
  • 27. Christiansen, Ch., Aagaard, T., Bartholdy, J., Christiansen, M., Nielsen, J., Nielsen, N., Pedersen, J.B.T. and Vinther, N. 2004. Total sediment budget of a transgressive barrier-spit, Skallingen, SW Denmark: A review. Geografisk Tidsskrift-Danish Journal of Geography, 104, 107–126.
  • 28. Chrząstek, A. and Wojewoda, J. 2022. Rosselia – a trace fossil indicator of beach-shoreface sedimentary settings in both transgressive and regressive sedimentary sequences of the Intra-Sudetic Basin. In: Jagt, J.W.M., Jagt-Yazykova, E., Walaszczyk, I. and Żylińska, A. (Eds), 11 th International Cretaceous Symposium Warsaw, Poland, 2002, Abstract Volume, 138–139.
  • 29. Clemmensen, L.B., Bendixen, M., Hede, M.U., Kroon, A., Nielsen, L. and Murray, A.S. 2014. Morphological records of storm floods exemplified by the impact of the 1872 Baltic storm on a sandy spit system in south-eastern Denmark. Earth Surface Processes and Landforms, 39, 499–508.
  • 30. Costas, S. and Fitzgerald, D. 2011. Sedimentary architecture of a spit-end (Salisbury Beach, Massachusetts): The imprints of sea-level rise and inlet dynamics. Marine Geology, 284, 203–216.
  • 31. Craig, M.S., Jol, H.M., Teitler, L. and Warnke, D.A. 2012. Geophysical surveys of a pluvial lake barrier deposit, Beatty Junction, Death Valley, California, USA. Sedimentary Geology, 269–270, 28–36.
  • 32. D’Alessandro, A. and Bromley, R.G. 1987. Meniscate trace fossils and the Muensteria–Taenidium problem. Palaeontology, 30, 743–763.
  • 33. D’Alessandro, A., Loiacono, F. and Bromley, R.G. 1993. Marine and nonmarine trace fossils and plant roots in a regressional setting (Pleistocene, Italy). Rivista Italiana di Paleontologia e Stratigrafia, 98, 495–522.
  • 34. Daly, J., McGeary, S. and Krantz, D.E. 2002. Ground-penetrating radar investigation of a late Holocene spit complex: Cape Henlopen, Delaware. Journal of Coastal Research, 18, 274– 286.
  • 35. Dorador, J. and Rodríguez-Tovar, F.J. 2014. Quantitative estimation of bioturbation based on digital image analysis. Marine Geology, 349, 55–60.
  • 36. Dreyer, T., Whitaker, M., Dexter, J., Flesche, H. and Larsen, E. 2005. From spit system to tide-dominated delta: integrated reservoir model of the Upper Jurassic Sognefjord Formation on the Troll West Field. In: Dore, A.G. and Vining, B.A. (Eds), Petroleum Geology: North-West Europe and Global Perspectives, Proceedings of the 6 th Petroleum Geology Conference, 423–448. Geological Society; London.
  • 37. Droser, M.L. and Bottjer, D.J. 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology, 56, 558–559.
  • 38. Ehrenberg, K. 1944. Ergänzende Bemerkungen zu den seinerzeit aus dem Miozän von Burgschleinitz beschriebenen Gangkernen und Bauten dekapoder Krebse. Paläontologische Zeitschrift, 23, 345–359.
  • 39. Einsele, G., Ricken, W. and Seilacher, A. 1991. Cycles and events in stratigraphy, 955 pp. Springer-Verlag; Berlin, Heidelberg, New York.
  • 40. Ekdale, A.A. and Bromley, R.G. 2003. Paleoethologic interpretation of complex Thalassinoides in shallow-marine limestones, Lower Ordovician, southern Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 221–227.
  • 41. Erbacher, J., Bornemann, A., Petrizzo, M.R. and Huck, S. 2020. Chemiostratigraphy and stratigraphic distribution of keeled planktonic foraminifera in the Cenomanian of the North German Basin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 171, 149–161.
  • 42. Esperante, R., Rodríguez-Tovar, F.J. and Nalin, R. 2021. Rhizoliths in lower Pliocene alluvial fan deposits of the Sorbas Basin (Almería, SE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 567, 110281.
  • 43. Evans, O.F. 1942. The origin of spits, bars, and related structures. The Journal of Geology, 50, 846–865.
  • 44. Fatka, O., Budil, P. and Mikuláš, R. 2022. Healed injury in a nektobenthic trilobite: “Octopus-like” predatory style in Middle Ordovician? Geologia Croatica, 75, 189–198.
  • 45. Flemming, B. and Martin, C.K. 2021. Sedimentology of a coastal shelf sector characterised by multiple bedload boundaries: Plettenberg Bay, inner Agulhas Bank, South Africa. Geo-Marine Letters, 41, 32.
  • 46. Foster, C., Savrda, C.E., Demetz, E. and Sandlin, W. 2020. Firmground crustacean burrow systems (Glossifungites ichnofacies) in marine shelf deposits, Paleocene Clayton Formation, Alabama, USA. Lethaia, 53, 500–514.
  • 47. Fruergaard, M., Tessier, B., Poirier, C., Mouazé, D., Weill, P., Noël, S., Bristow, C. and Bristow, C. 2020. Depositional controls on a hypertidal barrier‐spit system architecture and evolution, Pointe du Banc spit, north‐western France. Depositional controls on a hypertidal barrier‐spit system architecture and evolution, Pointe du Banc spit, north‐western France. Sedimentology, 67, 502–533.
  • 48. Fürsich, F.T. and Mayr, H. 1981. Non-marine Rhizocorallium (trace fossil) from the Upper Freshwater Molasse (Upper Miocene) of southern Germany. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 6, 321–333.
  • 49. Fürsich, F.T., Uchman, A., Alberti, M. and Pandey, D.K. 2018. Trace fossils of an amalgamated storm-bed succession from the Jurassic of the Kachchh Basin, India: The significance of time-averaging in ichnology. Journal of Palaeogeography, 7, 14–31.
  • 50. Genise, J.F. 2016. Ichnoentomology. Insect traces in soils and paleosols, 695 pp. Springer Cham.
  • 51. Genise, J.F. 2019. Ichnoentomology: insect traces in soils, paleosols and other substrates. Geology Today, 35, 29–38.
  • 52. Genise, J.F., Alonso-Zarza, A.M., Krause, J.M., Sánchez, M.V., Sarzetti, L., Farina, J.L., González, M.G., Cosarinsky, M. and Bellosi, E.S. 2010. Rhizolith balls from the Lower Cretaceous of Patagonia: Just roots or the oldest evidence of insect agriculture? Palaeogeography, Palaeoeclimatology, Palaeoecology, 287, 128–142.
  • 53. Genise, J.F., Bellosi, E.S. and Gonzalez, M.G. 2004. An approach to the description and interpretation of ichnofabrics in paleosols. In: McIlroy, D. (Ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis, 228, 355–382.
  • 54. Gillette, L., Pemberton, S.G. and Sarjeant, W.A.S. 2003. A Late Triassic invetebrate ichnofauna from Ghost Ranch, New Mexico. Ichnos, 10, 141–151.
  • 55. Gingras, M.K., Pemberton, S.G., Dashtgard, S. and Dafoe, L. 2008. How fast do marine invertebrates burrow? Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 280–286.
  • 56. Gingras, M.K., Räsänen, M.E., Pemberton, S.G. and Romero, L.A. 2002. Ichnology and sedimentology reveal depositional characteristics of bay-margin parasequence in the Miocene Amazonian Foreland Basin. Journal of Sedimentary Research, 72, 871–883.
  • 57. Gowland, S., Taylor, A.M. and Martinius, A.W. 2018. Integrated sedimentology and ichnology of Late Jurassic fluvial point-bars – facies architecture and colonization styles (Lourinhã Formation, Lusitanian basin, Western Portugal). Sedimentology, 65, 400–430.
  • 58. Gregory, M.R., Martin, A.J. and Campbell, K.A. 2004. Compound trace fossils formed by plant and animal interactions: Quaternary of northern New Zealand and Sapelo Island, Georgia (USA). Fossils and Strata, 51, 88–105.
  • 59. Gupta, E. and Rajani, M.B. 2020. Historical coastal maps: importance and challenges in their use in studying coastal geomorphology. Journal of Coastal Conservation, 24, 24.
  • 60. Heer, O., von 1877. Flora fossils Helvetiae. Die Vorweltliche Flora des Schweiz, 182 pp. J. Wuster and Co.; Zurich.
  • 61. Hejl, E., Heberer, B., Salcher, B., Sekyra, G., Van den haute, P. and Leichmann, J. 2023. Thermochronological constraints on the post-Variscan exhumation history of the southeastern Bohemian Massif (Waldviertel and Weinsberg Forest, Austria): palaeogeographic and geomorphologic implications. International Journal of Earth Sciences, 112, 1203–1226.
  • 62. Hiroki, Y. and Masuda, F. 2000. Gravelly spit deposits in a transgressive systems tract: the Pleistocene Higashikanbe Gravel, central Japan. Sedimentology, 47, 135–149.
  • 63. Holub, V. 1966. Geologické poměry Vychodního Podkrkonoši. Unpublished report, Charles University. Geofond ČR (National Centre for Applied Geosciences Information and Documentation); Praha.
  • 64. Holub, V. 1972. Permian of the Bohemian Massif. In: Falke, H. (Ed.), Rotliegendes Essays on European Lower Permian, 137–188. E.J. Brill; Holland.
  • 65. Howard, J.D. and Frey, R.W. 1984. Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Canadian Journal of Earth Sciences, 21, 200–219.
  • 66. Hsieh, S., Łaska, W. and Uchman, A. 2023. Intermittent and temporally variable bioturbation by some terrestrial invertebrates: implications for ichnology. The Science of Nature, 110, 11.
  • 67. Hsieh, S. and Uchman, A. 2023. Spatially associated or composite life traces from Holocene paleosols and dune sands provide evidence for past biotic interactions. The Science of Nature, 110, 9.
  • 68. Janušaitė, R., Jarmalavičius, D., Jukna, L., Žilinskas, G. and Pupienis, D. 2022. Analysis of Interannual and Seasonal Nearshore Bar Behaviour Observed from Decadal Optical Satellite Data in the Curonian Spit, Baltic Sea. Remote Sensing, 14, 3423
  • 69. Janušaitė, R., Jarmalavičius, D., Pupienis, D., Žilinskas, G. and Jukna, L. 2023. Nearshore sandbar switching episodes and their relationship with coastal erosion at the Curonian Spit, Baltic Sea. Oceanologia, 65, 71–85.
  • 70. Jerzykiewicz, T. and Wojewoda, J. 1986. The Radków and Szczeliniec sandstones: An example of giant foresets on a tectonically controlled shelf of the Bohemian Cretaceous Basin (Central Europe). In: Knight, R.J. and McLean, J.R. (Eds), Shelf Sands and Sandstones. Canadian Society of Petroleum Geologists, 11, 1–35.
  • 71. Jewell, P.W. 2007. Morphology and paleoclimatic significance of Pleistocene Lake Bonneville spits. Quaternary Research, 68, 421–430.
  • 72. Johannessen, P.N. and Nielsen, L.H. 2006. Spit-systems – An overlooked target in hydrocarbon exploration: The Holocene to Recent Skagen Odde, Denmark. GEUS Bulletin Geological Survey of Denmark and Greenland Bulletin, 10, 17–20.
  • 73. Johannessen, P.N. and Nielsen, H.N. 2009. Spit-system facies model – can this be used to reinterpret some of the isolated shelf sandstone ridges in the Cretaceous Western Interior Seaway, USA? Abstract Book, AAPG Convention & Exhibition, 7 June–10 June, 2009, 108–109. American Association of Petroleum Geologists; Denver.
  • 74. Jol, H.M., Lawton, D.C. and Smith, D.G. 2002. Ground penetrating radar: 2-D and 3-D subsurface imaging of a coastal barrier spit, Long Beach, WA, USA. Geomorphology, 53, 165–181.
  • 75. Keighley, D.G. and Pickerill, R.K. 1994. The ichnogenus Beaconites and its distinction from Ancorichnus and Taenidium. Palaeontology, 37, 305–337.
  • 76. Kennedy, W.J. 1967. Burrows and surface traces from the Lower Chalk of southern England. Bulletin of the British Museum (Natural History). Geology, 15, 125–167.
  • 77. King, C.A.M. and Mc Cullagh, M.J. 1971. A simulation model of a complex recurved spit. Journal of Geology, 79, 22–37.
  • 78. King, M.R., La Croix, A.D., Gates, T.A., Anderson, P.B. and Zanno, L.E. 2021. Glossifungites gingrasi n. isp., a probable subaqueous insect domicile from the Cretaceous Ferron Sandstone, Utah. Journal of Paleontology, 95, 427–439.
  • 79. Klappa, C.F. 1980. Rhizoliths in terrestrial carbonates classification, recognition, genesis and significance. Sedimentology, 27, 613–629.
  • 80. Klappa, C.F. 2006. Rhizoliths in terrestrial carbonates: Classification, recognition, genesis and significance. Sedimentology, 27, 613–629.
  • 81. Knaust, D. 2015. Trace fossils from the continental Upper Triassic Kagerod Formation of Bornholm, Denmark. Annales Societatis Geologorum Poloniae, 85, 481–492.
  • 82. Knaust, D. 2017. Atlas of trace fossils in Well Cores. Appearance, Taxonomy and Interpretation, 209 pp. Spinger.
  • 83. Knaust, D. 2021a. Balanoglossites-burrowed firmgrounds – the most common ichnofabric on earth? Earth-Science Reviews, 220, 103747.
  • 84. Knaust, D. 2021b. The paradoxical ichnotaxonomy of Thalassinoides paradoxicus: a name of different meanings. Paläontologische Zeitschrift, 95, 179–186.
  • 85. Korneisel, D., Gallois, R.W., Duffin, C.J. and Benton, M.J. 2015. Latest Triassic marine sharks and bony fishes from a bone bed preserved in a burrow system, from Devon, UK. Proceedings of the Geologists’ Association, 126, 130–142.
  • 86. Kraus, M.J. and Hasiotis, S.T. 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: Examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 76, 633–646.
  • 87. Krause, J.M., Bown, T.M., Bellosi, E.S. and Genise, J.F. 2008. Trace fossils of cicadas in the Cenozoic of Central Patagonia, Argentina. Palaeontology, 51, 405–418.
  • 88. Krist, F. and Schaetzl, R.J. 2001. Paleowind (11,000 BP) directions derived from lake spits in Northern Michigan. Geomorphology, 38, 1–18.
  • 89. Leszczyński, S. and Nemec, W. 2015. Dynamic stratigraphy of composite peripheral unconformity in a foredeep basin. Sedimentology, 62, 645–680.
  • 90. Lindhorst, S., Betzler, C. and Hass, H.C. 2008. The sedimentary architecture of a Holocene barrier spit (Sylt, German Bight): swash-bar accretion and storm erosion. Sedimentary Geology, 206, 1–16.
  • 91. Lindhorst, S., Lampart, J., Hass, H.C. and Betzler, C. 2010. Anatomy and sedimentary model of a hooked spit (Sylt, southern North Sea). Sedimentology, 57, 935–955.
  • 92. Lobo, F.J., Fernandez-Salas, L.M., Hernandez-Molina, F.J., Gonzalez, R., Dias, J.M.A., Díaz del Río, V. and Somoza, L. 2005, Holocene highstand deposits in the Gulf of Cadiz, SW Iberian Peninsula: a high-resolution record of hierarchical environmental changes. Marine Geology, 219, 109–131.
  • 93. Lobo, F.J., González, R., Dias, J.M.A., Hernández-Molina, F.J., Fernández-Salas, L.M., Díaz del Río, V. and Somoza, L. 2003. Onshore-offshore comparison of late Holocene highstand deposits in the Gulf of Cadiz margin (SW Iberian Peninsula): a record of high-frequency environmental fluctuations. In: Mastronuzzi, G. and Sanso, P. (Eds), Field Guide, Quaternary coastal morphology and sea level changes. Final Conference Project IGCP 437 Coastal Environmental Change During Sea-Level Highstands: A Global Synthesis with implications for management of future coastal change. Otranto/Taranto–Puglia (Italy) 22–28 September 2003. Abstract Book, 149–152.
  • 94. Lopez, E.D. 2022. An analog for large-scale lacustrine deposits: 3D characterization of a Pleistocene Lake Bonneville spit. Unpublished PhD Thesis, 53 pp. Brigham Young University, Provo UT.
  • 95. MacEachern, J. and Bann, K.L. 2020. The Phycosiphon ichnofacies and the Rosselia ichnofacies: two new ichnofacies for marine deltaic environments. Journal of Sedimentary Research, 90, 855–886.
  • 96. MacEachern, J.A., Bann, K.L., Gingras, M.K., Zonneveld, J.-P., Dashtgard, S.E. and Pemberton, S.G. 2012. The ichnofacies paradigm. In: Knaust, D. and Bromley, R.G. (Eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64, 103–138.
  • 97. MacEachern, J.A., Pemberton, S.G., Gingras, M.K. and Bann, K.L. 2007. The ichnofacies paradigm: A fifty-year retro-spective. In: Miller III, W. (Ed.), Trace fossils. Concepts, Problems, Prospects, 52–77. Elsevier.
  • 98. MacEachern, J.A., Raychaudhuri, I. and Pemberton, S.G. 1992. Stratigraphic applications of the Glossifungites ichnofacies: Delineating discontinuities in the rock record. In: Pemberton, S.G. (Ed.), Applications of Ichnology to Petroleum Explorations, A Core Workshop. SEPM Society for Sedimentary Geology, 17, 169–199.
  • 99. Mader, D. 1982. Aeolian sands in continental red beds of the Middle Buntsandstein (Lower Triassic) at the western margin of the German Basin. Sedimentary Geology, 31, 191–230.
  • 100. Mader, D. 1983. Aeolian sands terminating an evolution of fluvial depositional environment in Middle Buntsandstein of the Eifel, Federal Republic Germany. In: Brookfield, M.E. and Ahlbrandt, T.S. (Eds), Eolian Sediments and Processes. Developments in Sedimentology, 38, 583–612.
  • 101. Mader, D. 1990. Palaecology of the flora in Buntsandstein and Keuper in the Triassic of Middle Europe. In: Fischer, G. (Ed.), Buntsandstein, vol. 1, 936 pp. Springer Verlag; Stuttgart, New York.
  • 102. Mader, D. 1992. Bohdašín Formation (Buntsandstein). In: Mader, D. (Ed.), Evolution of palaeoecology and palaeoenvironments of Permian and Triassic fluvial basins in Europe, vol. 1, 501–555. Gustav Fischer-Verlag; Stuttgart.
  • 103. Madzia, D. 2014. The first non-avian theropod from the Czech Republic. Acta Palaeontologica Polonica, 59, 855–862.
  • 104. Mángano, M.G. and Buatois, L.A. 2016. The Cambrian explosion. In: Mángano, M.G. and Buatois, L.A. (Eds), The trace-fossil record of major evolutionary events, vol. 1, Precambrian and Paleozoic. Topics in Geobiology, 39, 71–126.
  • 105. Marchetti, L., Collareta, A., Belvedere, M. and Leonardi, G. 2021. Ichnotaxonomy, biostratigraphy and palaeoecology of the Monti Pisani tetrapod ichnoassociation (Tuscany, Italy) and new insights on Middle Triassic Dinosauromorpha. Palaeogeography, Palaeoclimatology, Palaeoecology, 567, 110235.
  • 106. Martínek, K. and Štolfová, K. 2009. Provenance study of Permian non-marine sandstones and conglomerates of the Krkonoše Piedmont Basin (Czech Republic): exotic marine limestone pebbles, heavy minerals and garnet composition. Bulletin of Geoscience, 84, 555–568.
  • 107. Meistrell, F.J. 1972. The spit-platform concept: laboratory observation of spit development. In: Schwartz, M.L. (Ed.), Spits and Bars, 224–284. Dowden, Hutchinson and Ross; Stroudsburg, Pennsylvania.
  • 108. Mencl, V., Bureš, J. and Sakala, J. 2013. Summary of occurrence and taxonomy of silicified Agathoxylon-type of wood on Late Paleozoic basins of the Czech Republic. Folia, 47, 14–26.
  • 109. Merletti, G.D., Steel, R.J., Olariu, C., Melick, J.J., Armitage, P.J. and Shabro, V. 2018. The last big marine transgression of the Western Interior Seaway: Almond Formation development from barrier spits across south Wyoming. Marine and Petroleum Geology, 98, 763–782.
  • 110. Mikuláš, R. 2019. Stop 2. Červeny Kostelec, U Devíti Křížů (also Krákorka) Quarry. In: Kočová Veselská, M., Adamovič, J., Kernhoff, M., Rifl, M., Samánek, J. and Mikuláš, R. (Eds), 15 th International Ichnofabric Workshop, Prague, Czechia, April 27th–May 3rd , 2019, Program, Abstracts, Field Guidebook, 84–86. The Czech Academy of Sciences, Institute of Geology; Prague.
  • 111. Mikuláš, R., Němečková, M. and Adamovič, J. 2002. Bioerosion and bioturbation of a weathered metavolcanic rock (Cretaceous, Czech Republic). Acta Geologica Hispanica, 37, 21–27.
  • 112. Mikuláš, R., Plička, M. and Skalický, J. 1991. A find of mud scrolls in Lower Triassic sandstone at the locality Devět Křížů (NE Bohemia). Věstnik Českého Geologického Ŭstavu, 66, 247–249. [In Czech with English summary]
  • 113. Mikuláš, R. and Prouza, V. 1999. The Cretaceous biogenic structures created in Triassic sandstones (Devět křížů at Červený Kostelec, Bohemia, Czech Republic). Věstnik Českého Geologického Ŭstavu, 74, 335–342.
  • 114. Miller, M.F. and Smail, S.E. 1997. A semiquantitative field method for evaluating bioturbation on bedding planes. Palaios, 12, 391–396.
  • 115. Mineiro, A.S. and Santucci, R.M. 2018. Ichnofabrics and ichnofossils from the continental deposits of the Serra da Galga Member, Marília Formation, Bauru Group (Upper Cretaceous), Uberaba, Minas Gerais, Brazil. Journal of South American Earth Sciences, 86, 287–300.
  • 116. Mineiro, A.S., Santucci, R.M., Rocha, D.M.S. de, Andrade, M.B. de and Nava, W.R. 2017. Invertebrate ichnofossils and rhizoliths associated with rhizomorphs from the Marilía Formation (Echaporã Member), Bauru Group, Upper Cretaceous, Brazil. Journal of South American Earth Sciences, 80, 529–540.
  • 117. Mroczkowski, J. and Mader, D. 1985. Sandy inland braidplain deposition with local aeolian sedimentation in the lower and middle parts of the Buntsandstein and sandy coastal braidplain deposition in the top Zechstein in the Sudetes (Lower Silesia, Poland). Lecture Notes in Earth Sciences, 4, 165–195.
  • 118. Myrow, P.M. 1995. Thalassinoides and the enigma of Early Palaeozoic open-framework burrow systems. Palaios, 10, 58–74.
  • 119. Myrow, P.M. and Southard, J.B. 1996. Tempestite deposition. Journal of Sedimentary Research, 66, 875–887.
  • 120. Nádaskay, R. 2021. Mid-Cretaceous transgressions on the northern edge of Prague. Guidebook to field trip FT12 (19 June 2021). 35 th IAS Meeting of Sedimentology, June 21–25, 2021. Prague, Czech Republic.
  • 121. Nádaskay, R., Žák, J., Sláma, J., Sidorinová, T. and Valečka, J. 2019. Deciphering the Late Paleozoic to Mesozoic tectonosedimentary evolution of the northern Bohemian Massif from detrital zircon geochronology and heavy mineral provenance. International Journal of Earth Sciences, 108, 2653–2681.
  • 122. Nascimento, D.L., Batezelli, A. and Ladeira, F.S.B. 2019. The paleoecological and paleoenvironmental importance of root traces: Plant distribution and topographic significance of root patterns in Upper Cretaceous paleosols. Catena, 172, 789–806.
  • 123. Nascimento, D.L., Netto, R.G., Batezelli, A., Ladeira, F.S.B. and Sedorko, D. 2023. Taenidium barretti ichnofabric and rainfall seasonality: Insights into dryland suites of Scoyenia ichnofacies. Journal of Palaeogeography, 12, 28–49.
  • 124. Neal, A. 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progres. Earth-Science Reviews, 66, 261–330.
  • 125. Nehyba, S. and Roetzel, R. 2021. Coastal sandy spit deposits (Lower Burdigalian/Eggenburgian) in the Alpine-Carpathian Foredeep of Lower Austria. Geological Quarterly, 65, 50.
  • 126. Nielsen, L.H. and Johannessen, P.N. 2009. Facies architecture and depositional processes of the Holocene–Recent accretionary forced regressive Skagen spit system, Denmark. Sedimentology, 56, 935–968.
  • 127. Nielsen, L.H., Johannessen, P.N. and Surlyk, F. 1988. A Late Pleistocene coarse-grained spit-platform sequence in northern Jylland, Denmark. Sedimentology, 35, 915–937.
  • 128. Novak, B. and Pedersen, G.K. 2000. Sedimentology, seismic facies and stratigraphy of a Holocene spit-platform complex interpreted from high-resolution shallow seismics, Lysegrund, southern Kattegat, Denmark. Marine Geology, 162, 317–335.
  • 129. Ollerhead, J. and Davidson-Arnott, R.G.D. 1995. The evolution of Buctouche Spit, New Brunswick, Canada. Marine Geology, 124, 215–236.
  • 130. Opluštil, S., Schmitz, M., Kachlík, U. and Stamberg, S. 2016. Re-assessment of lithostratigraphy, biostratigraphy, and volcanic activity of the Late Paleozoic Intra-Sudetic, Krkonoše-Piedmont and Mnichovo-Hradište basins (Czech Republic) based on new U-Pb CA-ID-TIMS ages. Bulletin of Geosciences, 91, 399–432.
  • 131. Opluštil, S., Šimůnek, Z. and Mencl, V. 2022. Macroflora of the Krkonoše-Piedmont Basin (Pennsylvanian–early Permian); Bohemian Massif, Czech Republic. Review of Palaeobotany and Palynology, 303, 104665.
  • 132. Pancrazzi, L. 2022. Dynamique et structure interne de barriers littorales sablo-graveleuses en environnement hypertidal: approches expérimentale et in-situ. Unpublished Doctoral thesis, 216 pp. Normandie Université, Caen.
  • 133. Pancrazzi, L., Weill, P., Tessier, B., Le Bot, S. and Benoit, L. 2022. Morphostratigraphy of an active mixed sand-gravel barrier spit (Baie de Somme, northern France). Sedimentology, 69, 2753–2778.
  • 134. Panin, N. and Overmars, W. 2012. The Danube delta evolution during the Holocene: reconstruction attempt using geomorphological and geological data, and some of the existing cartographic documents. Geo-Eco-Marina, 18, 75–104.
  • 135. Pellerin Le Bas, X, Levoy, F., Robin, N. and Anthony, E.J. 2022. The formation and morphodynamics of complex multi‐hooked spits and the contribution of swash bars. Earth Surface Processes and Landforms, 47, 159–178.
  • 136. Pemberton, S.G. and Gingras, M.K. 2005. Classification and characterizations of biogenically enhanced permeability. AAPG Bulletin, 89, 1493–1517.
  • 137. Pemberton, S.G., MacEachern, J.A., Dashtgard, S.E., Bann, K.L., Gingras, M.K. and Zonneveld, J.-P. 2012. Shorefaces. In: Knaust, D. and Bromley, R.G. (Eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64, 563–603.
  • 138. Peterson, C.D., Williams, S.S., Cruikshank, K.M. and Dubè, J.R. 2011. Geoarchaeology of the Nehalem spit: Redistribution of beeswax galleon wreck debris by Cascadia earthquake and tsunami (~A.D. 1700), Oregon, USA. Geoarchaeology, 26, 219–244.
  • 139. Pervesler, P. and Uchman, A. 2009. A new Y-shaped trace fossil attributed to upogebiid crustaceans from Early Pleistocene of Italy. Acta Palaeontologica Polonica, 54, 135–142.
  • 140. Plaziat, J.C. and Mahmoudi, M. 1990. The role of vegetation in Pleistocene eolianite sedimentation; an example from Eastern Tunisia. Journal of African Earth Sciences, 10, 445–451.
  • 141. Porrenga, D.H. 1967. Glauconite and chamosite as depth indicators in the marine environment. Marine Geology, 5, 495–501.
  • 142. Prouza, V. 1988. Geologická Mapa ÈSR. List 04-32 Broumov, 1:50 000. Ústřední Ústav Geologický; Praha.
  • 143. Prouza, V. and Tasler, R. 1985. Přehledná geologická mapa podkrkonošské pánve. Ústřední Ustav Geologický; Praha.
  • 144. Prouza, V., Tásler, R., Valin, F. and Vlastimil, H. 1985. Gravelly to sandy braidplain deposition in the Buntsandstein-facies Bohdašín Formation in norteastern Bohemia (Czechoslovakia). In: Mader, D. (Ed.), Aspects of fluvial sedimentation in the lower Triassic Buntsandstein of Europe. Lecture Notes in Earth Sciences, 4, 397–410.
  • 145. Rasmussen, E.S. and Dybkjær, K. 2005. Sequence stratigraphy of the Upper Oligocene–Lower Miocene of eastern Jylland, Denmark: role of structural relief and variable sediment supply in controlling sequence development. Sedimentology, 52, 25–63.
  • 146. Rasmussen, E.S., Dybkjær, K. and Piasecki, S. 2010. Lithostratigraphy of the upper Oligocene–Miocene succession in Denmark. Bulletin of the Geological Society of Denmark, 22, 1–92.
  • 147. Reimann, T., Lindhorst, S., Thomsen, K.J., Murray, A.S. and Frechen, M. 2012. OSL dating of mixed coastal sediment (Sylt, German Bight, North Sea). Quaternary Geochronology, 11, 52–67.
  • 148. Retallack, G.J. 1976. Triassic palaeosols in the upper Narrabeen Group of New South Wales. Part I: Features of the palaeosols. Journal of the Geological Society of Australia, 23, 383–399.
  • 149. Retallack, G.J. 1988. Field recognition of paleosols. Geological Society of America, Special Papers, 216, 1–20.
  • 150. Retallack, G.J. 2001. Soils of the Past: An Introduction to Paleopedology, 520 pp. Blackwell; Oxford.
  • 151. Rieth, A. 1932. Neue Funde spongeliomorpher Fucoiden aus Jura Schwabens. Geologische Paläontologische Abhandlungen, Neue Folge, 19, 257–294.
  • 152. Robin, N., Levoy, F., Anthony, E.J. and Monfort, O. 2020. Sand spit dynamics in a large tidal‐range environment: Insight from multiple LiDAR, UAV and hydrodynamic measurements on multiple spit hook development, breaching, reconstruction, and shoreline changes. Earth Surface Processes and Landforms, 45, 2706–2726.
  • 153. Rodríguez-Santalla, I., Gomez-Ortiz, D., Martín-Crespo, T., Sánchez-García, M.J., Montoya-Montes, I., Martín-Velázquez, S., Barrio, F., Serra, J., Ramírez-Cuesta, J.M. and Gracia, F.J. 2021. Study and evolution of the dune field of La Banya Spit in Ebro Delta (Spain) using LiDAR Data and GPR. Remote Sensing, 13, 802.
  • 154. Rodríguez-Santalla, I. and Somoza, L. 2018. The Ebro River delta. In: Morales, J.A. (Ed.), The Spanish Coastal Systems, 467–488. Springer Nature; Switzerland AG.
  • 155. Rodríguez-Tovar, F.J., Alcála, L. and Cobos, A. 2016. Taenidium at the Lower Barremian El Hoyo dinosaur tracksite (Teruel, Spain): Assessing palaeoenvironmental conditions for the invertebrate community. Cretaceous Research, 65, 48–58.
  • 156. Rubio, B. and López-Pérez, A.E. 2024. Exploring the genesis of glaucony and verdine facies for paleoenvironmental interpretation: A review. Sedimentary Geology, 461, 106579.
  • 157. Salter, J.W. 1857. On annelide-burrows and surface-markings from the Cambrian rocks of the Longmynd. No 2. Geological Society of London, Quarterly Journal, 13, 199–206.
  • 158. Sarjeant, W.A.S. 1975. Plant trace fossils. In: Frey R.W. (Ed.), The Study of Trace Fossils, 163–179. New York; Springer Verlag.
  • 159. Schaetzl, R.J., Krist Jr, F.J., Lewis, C.F.M., Luehmann, M.D. and Michalek, M.J. 2016. Spits formed in Glacial Lake Algonquin indicate strong easterly winds over the Laurentian Great Lakes during late Pleistocene. Journal of Paleolimnology, 55, 49–65.
  • 160. Sedorko, D., Alessandretti, L., Warren, L.V., Verde, M., Rangel, C.C., Ramos, K.S. and Netto, R.G. 2020. Trace fossils from the Upper Cretaceous Capacete Formation, Sanfranciscana Basin, Central Brazil. Annales Societatis Gelogorum Poloniae, 90, 247–260.
  • 161. Shan, X., Yu, X., Clift, P. D., Tan, C., Jin, L., Li, M. and Li, W. 2015. The Ground Penetrating Radar facies and architecture of a Paleo-spit from Huangqihai Lake, North China: Implications for genesis and evolution. Sedimentary Geology, 323, 1–14.
  • 162. Shaw, J., Wu, Y. and Potter, D.P. 2019. Distribution and morphology of inner-shelf sand bodies off southwest Newfoundland based on merged multibeam sonar and lidar data. Canadian Journal of Earth Sciences, 57, 114–122.
  • 163. Shawler, J.L., Hein, C.J., Obara, C.A., Robbins, M.G., Huot, M.G. and Fenster, M.S. 2021. The effect of coastal land-form development on decadal-to millennialscale longshore sediment fluxes: Evidence from the Holocene evolution of the central mid-Atlantic coast, USA. Quaternary Science Reviews, 267, 107096.
  • 164. Shukla, S.B., Patidar, A.K. and Bhatt, N. 2008. Application of GPR in the study of shallow subsurface sedimentary architecture of Modwa spit, Gulf of Kachchh. Journal of Earth System Science, 117, 33–40.
  • 165. Simeoni, U., Fontolan, G., Tessari, U. and Corbau, C. 2007. Domains of spit evolution in the Goro area, Po Delta, Italy. Geomorphology, 86, 332–348.
  • 166. Šimůnek, T. 2019. Revision of the genus Cordaites UNGER from the Permian of the Intrasudetic Basin (Broumov Formation, Olivêtin Member, Czech Republic). Geologia Croatica, 72, 163–172.
  • 167. Śliwiński, W. 1984. Proposed revision of Chełmsko Śląskie Beds (Permian, Intra-Sudetic Basin. Geologia Sudetica, 18, 167–174. [In Polish with English summary]
  • 168. Smith, J.J., Hasiotis, S.T., Kraus, M.J. and Woody, D.T. 2008. Naktodemasis bowni: new ichnogenus and ichnospecies for adhesive meniscate burrows (AMB), and paleoenvironmental implications, Paleogene Willwood Formation, Bighorn Basin, Wyoming. Journal of Paleontology, 82, 267–278.
  • 169. Somoza, L. and Rodríguez-Santalla, I. 2014. Geology and geomorphological evolution of the Ebro River Delta. In: Gutiérrez, F. and Gutiérrez, M. (Eds), Landscapes and Landforms of Spain, World Geomorphological Landscapes, 213–227. Springer Science+Business Media; Dordrecht.
  • 170. Spaggiari, R. and Bordy, E.M. 2023. Anatomy of a diamondiferous gravel barrier spit at the palaeo‐Orange River mouth, south‐western Namibia. Sedimentology, 70, 1630–1654.
  • 171. Špičaková, L., Uličný, D. and Svobodová, M. 2014. Phases of the mid-Cenomanian transgression recorded in a composite palaeovalley fill – the Horoušany quarry, Bohemian Cretaceous Basin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165, 581–619.
  • 172. Srikanth, S., Lum, S.K.Y. and Chen, Z. 2015. Mangrove root: adaptations and ecological importance. Trees, 30, 451–465.
  • 173. Srivastava, J. and Prasad, V. 2019. Evolution and paleobiogeography of mangroves. Marine Ecology, 40, e12571.
  • 174. Tásler, R. 1995. Geological Map of the Czech Republic 1:50000, Sheet Meziměstí 04-31. Czech Geological Survey, Prague, Czech Republic. [In Czech]
  • 175. Taveneau, A., Almar, R., Bergsma, E., Sy, B.A., Ndour, A., Sadio, M. and Garlan, T. 2021. Observing and predicting coastal erosion at the Langue de Barbarie sand spit around Saint Louis (Senegal, West Africa) through satellite-derived Digital Elevation Model and shoreline. Remote Sensing, 13, 2454.
  • 176. Taylor, A.M. and Goldring, R. 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150, 141–148.
  • 177. Taylor, A., Goldring, R. and Gowland, S. 2003. Analysis and application of ichnofabrics. Earth-Science Reviews, 60, 227–259.
  • 178. Teisseyre, A.K. 1968. The Lower Carboniferous of the Intrasudetic Basin: a study in sedimentary petrology and basin analysis. Geologia Sudetica, 4, 221–298.
  • 179. Teisseyre, A.K. 1973. Carboniferous fans and fanglomerates in the Central Sudetes 1: Marginal faults, downfaulting and sedimentation. Bulletin of the Polish Academy of Sciences, Earth Sciences, 21, 147–155.
  • 180. Teisseyre, A.K. 1975. Sedimentology and palaeogeography of the Kulm alluvial fans in the western Intrasudetic Basin (Central Sudetes, SW Poland). Geologia Sudetica, 9, 5–135.
  • 181. Teisseyre, A.K. and Teisseyre, J. 1969. Faulting and sedimentation on the north-western margin of the Intrasudetic Basin. Bulletin of the Polish Academy of Sciences, Earth Sciences, 17, 41–48.
  • 182. Tiffany, M. R., Ping, W. and Jack, A.P. 2013. Storm-driven cyclic beach morphodynamics of a mixed sand and gravel beach along the Mid-Atlantic Coast, USA. Marine Geology, 346, 403–421.
  • 183. Tillmann, T. and Wunderlich, J. 2013. Barrier rollover and spit accretion due to the combined action of storm surge induced washover events and progradation: Insights from ground-penetrating radar surveys and sedimentological data. In: Conley, D.C., Masselink, G., Russell, P.E. and O’Hare, T.J. (Eds), Proceedings 12th International Coastal Symposium (Plymouth, England). Journal of Coastal Research, Special Issue, 65, 600–605.
  • 184. Tillmann, T. and Wunderlich, J. 2014. Barrier spit accretion model of Southern Sylt, German North Sea: Insights from ground-penetrating radar surveys and sedimentological data. Zeitschrift für Geomorphologie, 68, 137–161.
  • 185. Uchman, A., Dávid, Á. and Fodor, R. 2023. Clasts derived from rhizocretions in shallow-marine Miocene clastic deposits of northern Hungary: an example of zombie biogenic structures. Geological Quarterly, 67, 4.
  • 186. Uchman, A., Ślączka, A. and Renda, P. 2012. Probable root structures and associated trace fossils from the Lower Pleistocene calcarenites of Favignana Island, southern Italy: dilemmas of interpretation. Geological Quarterly, 56, 745–756.
  • 187. Uličný, D. 2001. Depositional systems and sequence stratigraphy of coarse-grained deltas in a shallow-marine, strikeslip setting: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology, 48, 599–628.
  • 188. Uličný, D. 2004. A drying-upward aeolian system of the Bohdašín Formation (Early Triassic), Sudetes of NE Czech Republic: record of seasonality and long-term palaeoclimate change. Sedimentary Geology, 167, 17–39.
  • 189. Uličný, D., Špičáková, L. and Čech, S. 2003. Changes in depositional style of an intra-continental strike-slip basin in response to shifting activity of basement fault zones: Cenomanian of the Bohemian Cretaceous. Basin. GeoLines, 16, 133–148.
  • 190. Uličný, D., Špičáková, L., Grygar, R., Svobodová, M., Čech, S. and Laurin, J. 2009. Palaeodrainage systems at the basal unconformity of the Bohemian Cretaceous Basin: roles of inherited fault systems and basement lithology during the onset of basin filling. Bulletin of Geosciences, 84, 577–610.
  • 191. Valečka, J. 2019. Jurassic pebbles in the Cretaceous sandstones of the Bohemian Basin as a possible tool for reconstruction of the Late Jurassic and Late Cretaceous palaeogeography. Volumina Jurassica, 17, 17–38.
  • 192. Valín, F. 1964. Lithology of Triassic deposits in NE Czech Republic. Véstník Českého Geologického Ústavu, 39, 459–462. [In Czech]
  • 193. Vejbæk, O.V., Anderson, C., Dusa, M., Herngreen, W., Krabbe, H. and Leszczyński, K. 2010. Cretaceous. In: Doornenbal, H. and Stevenson, A. (Eds), Petroleum Geological Atlas of the southern Permian Basin area, 195–209. EAGE Publications BV; Utrecht, Netherlands.
  • 194. Vejlupek, M. 1983. Stratigraphic position of the Devět Křížů Sandstone. Véstník Českého Geologického Ústavu, 58, 57–59. [In Czech]
  • 195. Vejlupek, M. 1990. Geological Map of the Czech Republic 1:50 000, Sheet Náchod 04-33. Czech Geological Survey, Prague, Czech Republic. [In Czech]
  • 196. Verde, M., Ubilla, M., Jiménez, J.J. and Genise, J.F. 2007. A new eartworm trace fossil from paleosols: Aestivation chambers from the Late Pleistocene Sopas Formation of Uruguay. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 339–347.
  • 197. Villegas-Martin, J., Netto, R.G. and Kern, H.P. 2020. Differences between autogenic and allogenic expressions of the Glossifungites Ichnofacies in estuarine and shoreface deposits from the Permian of the Paraná Basin, Brazil. Geological Journal, 55, 6974–6988.
  • 198. Voigt, S., Wagreich, M., Surlyk, F., Walaszczyk, I., Uličný, D., Čech, S., Voigt, T., Wiese, F., Wilmsen, M., Niebuhr, B., Reich, M., Funk, H., Michalík, J., Jagt, J.W.M., Felder, P.J. and Schulp, A.S. 2008. Chapter 15. Cretaceous, 923–997. In: McCann, T. (Ed.), The geology of Central Europe, Vol. 2. Mesozoic and Cenozoic. The Geological Society; London.
  • 199. Voigt, T. 2009. Die Lausitz-Riesengebirgs-Antiklinalzone als kreidezeitliche Inversionsstruktur: Geologische Hinweise aus den umgebenden Kreidebecken. Zeitschrift für geologische Wissenschaften, 37, 15–39.
  • 200. Voigt, T., Kley, J. and Voigt, S. 2021. Dawn and dusk of Late Cretaceous basin inversion in central Europe. Solid Earth, 12, 1443–1471.
  • 201. Wilmsen, M., Niebuhr, B., Fengler, M., Püttmann, T. and Berensmeier, M. 2019. The Late Cretaceous transgression in the Saxonian Cretaceous Basin (Germany): old story, new data and novel findings. Bulletin of Geosciences, 94, 71–100.
  • 202. Wilmsen, M., Uličný, D. and Košťák, M. 2014. Cretaceous basins of Central Europe: deciphering effects of global and regional processes – a short introduction. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165, 495–499.
  • 203. Wojewoda, J. 1986. Fault scarp induced shelf sand bodies in Upper Cretaceous of the Intrasudetic Basin. In: Teisseyre, A.K. (Ed.), 7 JAS Regional Meeting Guidebook, Excursion A-T, 1–30. Ossolineum; Wrocław.
  • 204. Wojewoda, J. 2007a. Neotectonic aspect of the Intrasudetic shear zone. Acta Geodynamica et Geomaterialia, 4 (148), 1–11.
  • 205. Wojewoda, J. 2007b. Žďárky–Pstrążna Dome – dextral strike-slip fault related structure at the eastern termination of the Poříčí–Hronov Fault Zone (Sudetes, Góry Stołowe Mts.). In: Venera, Z. (Ed.), 5 th Meeting of the Central European Tectonic Studies Group (CETEG’5), April 11–14.04.2007, Tepla, 93–96. Czech Geological Survey.
  • 206. Wojewoda, J. 2007c. Palaeogeography and tectonic evolution of the Žernov–Náchod–Kudowa sedimentary area. In: Venera, Z. (Ed.), 5th Meeting of the Central European Tectonic Studies Group (CETEG’5), April 11–14.04.2007, Tepla, 96–98. Czech Geological Survey.
  • 207. Wojewoda, J. 2008. Diffusional cells – an example of differentiated rheological reaction of granular sediment to seismic shock. Przegląd Geologiczny, 56, 842–847. [In Polish with English abstract]
  • 208. Wojewoda, J. 2009. Žďarky-Pstrążna Dome: a strike-slip fault-related structure at the eastern termination of the Poříčí-Hronov Fault Zone (Sudetes). Acta Geodynamica et Geomaterialia, 6 (3), 273–290.
  • 209. Wojewoda, J., Chrząstek, A. and Sokalski, D. 2022. Late Cretaceous geodynamics in the Middle Sudetes area (sedimentary and ichnological record). In: Todes, J. and Walaszczyk, I. (Eds), Cretaceous of Poland and adjacent areas: field trip guides, 11 th International Cretaceous Symposium, Warsaw, Poland, 2022, 191–241. Uniwersytet Warszawski; Warszawa.
  • 210. Wojewoda, J. and Kowalski, A. 2016. Rola południowo-sudeckiej strefy ścinania w ewolucji Sudetów. In: Wyzwania Polskiej Geologii – 3. Polski Kongres Geologiczny. In:
  • 211. Wojewoda, J. and Kowalski, A. (Eds), Przewodnik do Wycieczek Kongresowych, wycieczka 2.3, 21–43, Polskie Towarzystwo Geologiczne; Wrocław.
  • 212. Wojewoda, J., Rauch, M. and Kowalski, A. 2016. Synsedimentary seismotectonic features in Triassic and Cretaceous sediments of the Intrasudetic Basin (U Devěti křížů locality) – regional implications. Geological Quarterly, 60, 355–364.
  • 213. Woodward, S. 1830. A synoptic table of British organic remains, i–xiii, 1–50. Longman & John Stacy; London.
  • 214. Zajíc, J. 1998. The first find of the dinosaurian footprint in the Czech Republic (the Krkonoše Piedmont Basin) and its stratigraphic significance. Journal of the Czech Geological Society, 43, 273–276.
  • 215. Zajíc, J. 2014. Permian fauna of the Krkonoše Piedmont Basin (Bohemian Massif, central Europe). Acta Musei Nationalis Pragae, 70, 131–142.
  • 216. Zhang, L.-J., Qi, Y.-A., Buatois, L.A., Mángano, M. G., Meng, Y. and Li, D. 2017. The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate settings. Scientific Reports, 7, 45773.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-005d1670-9f92-4431-9994-b404ec68c7be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.