PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ stopnia usieciowania membran z cieczy polijonowych na dyfuzyjność i rozpuszczalność gazów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Influence of cross-linking in poly(ionic liquid) membranes on diffusivity and solubility of gases
Języki publikacji
PL
Abstrakty
PL
Dokonano przeglądu literatury dotyczącej procesu separacji gazów przy zastosowaniu membran z cieczy polijonowych. Omówiono wpływ struktury polimeru (m.in. stopnia usieciowania) na dyfuzyjność oraz rozpuszczalność CO2, N2, CH4. Wyjaśniono także pojęcie sieciowania cieczy polijonowych.
EN
Review of literature data concerning poly(ionic liquid) membranes for gas separation is presented. The influence of polymer structure (e.g. cross-linking) on diffusivity and solubility of CO2, N2, CH4 is discussed. Performance of cross-linking in poly(ionic liquid)s is described.
Rocznik
Tom
Strony
65--71
Opis fizyczny
Bibliogr. 31 poz., tab.
Twórcy
autor
  • Instytut Inżynierii Chemicznej PAN, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej PAN, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
  • [1] MECERREYES D., Polymeric ionic liquids: Broadening the properties and applications of polyelectrolyte, Progress in Polymer Science 2011, 36, 1629.
  • [2] GALLAGHER S., FLOREA L., FRASER K., DIAMOND D., Swelling and Shrinking Properties of Thermo-Responsive Polymeric Ioinic Liquid Hydrogels with Embedded Linear pNIPAA, Int. J. Mol. Sci. 2014, 15, 5337.
  • [3] SOLL S., ZHAO Q., WEBER J., YUAN J., Activated CO2 Sorption in Mesoporous Imidazolium-Type Poly(ionic liquid)-Based Polyampholytes, Chem. Mater. 2013, 25, 3003.
  • [4] WILKE A., YUAN J., ANTONIETTI M., WEBER J., Enhanced Carbon Dioxide Adsorption by a Mesoporous Poly(ionic liquid), ACS Macro Lett. 2012, 1, 1028.
  • [5] KUMBHARKAR S., BHAVSAR R., KHARUL U., Film forming polymeric ionic liquids (PILs) based on polybenzimidazoles for CO2 separation, RSC Adv. 2014, 4, 4500.
  • [6] LI P., PRAMODA K., CHUNG T., CO2 Separation from Flue Gas Using Polyvinyl-(Room Temperature Ionic Liquid) Composite Membranes, Ind. Eng. Chem. Res. 2011, 50, 9344.
  • [7] CARLISLE T., WIESENAUER E., NICODEMUS G., GIN D., NOBLE R., Ideal CO2/Light Gas Separation Performance of Poly(vinylimidazolium) Membranes and Poly(vinylimidazolium)-Ionic Liquid Composite Films, Ind. Eng. Chem. Res. 2013, 52, 1023.
  • [8] GU Y., LODGE T., Synthesis and Gas Separation Performance of Triblock Copolymer Ion Gels with a Polymerized Ionic Liquid Mid-Block, Macromolecules 2011, 44, 1732.
  • [9] BARA J., HATAKEYAMA E., GIN D., NOBLE R., Improving CO2 permeability in polymerized roomtemperature ionic liquid gas separation membranes through the formation of solid composite with a room-temperature ionic liquid, Polymer. Adv. Tech. 2008, 19, 1415.
  • [10] TOME L., MECERREYES D., FREIRE C., REBELO L., Pyrolidinium-based polymeric ionic liquid materials: New perspectives for CO2 separation membranes, J. Membr. Sci. 2013, 428, 260.
  • [11] HOJNIAK S., KHAN A., HOLOCZKI O., KIRCHNER B., VANKELECOM I., DEHAEN W., BINNEMANS K., Separation of Carbon Dioxide from Nitrogen or Methane by Supported Ionic Liquid Membranes (SILMs): Influence of the Cation Charge of the Ionic Liquid, J. Phys. Chem. B 2013, 117, 15131.
  • [12] LI P., PAUL D., CHUNG T., High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas, Green Chem. 2012, 14, 1052.
  • [13] FANG W., LUO Z., JIANG J., CO2 capture in poly(ionic liquid) membranes: atomistic insight into the role of anions, Phys. Chem. Chem. Phys. 2013, 15, 651.
  • [14] LIN H., FREEMAN B., Materials selction guidelines for membranes that remove CO2 from gas mixtures, J. Mol. Struct. 2005, 739, 57.
  • [15] TANG J., SHEN Y., RADOSZ M., SUN W., Isothermal Carbon Dioxide Sorption in Poly(ionic liquid)s, Ind. Eng. Chem. Res. 2009, 48, 9113.
  • [16] BLASIG A., TANG J., HU X., TAN S., SHEN Y., RADOSZ M., Carbon Dioxide Solubility in Polymerized Ionic Liquids Containing Ammonium and Imidazolium Cations from Magnetic Suspension Balance: P[VBTMA][BF4] and P[VBMI][BF4], Ind. Eng. Chem. Res. 2007, 46, 5542.
  • [17] CARLISLE T., BARA J., LAFRATE A., GIN D., NOBLE R., Main-chain imidazolium polymer membran es for CO2 separations: An initial study of a new ionic liquid-inspired platform, J. Membr. Sci. 2010, 359, 37.
  • [18] BARA J., GABRIEL C., HATAKEYAMA E., CARLISLE T., LESSMAN S., NOBLE R., GIN D., Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents, J. Membr. Sci. 2008, 321, 3.
  • [19] TANG J., TANG H., SUN W., RADOSZ M., SHEN Y., Poly(ionic liquid)s as New Materials for CO2 Absorption, J. Polym. Sci. A Polym. Chem. 2005, 43, 5477.
  • [20] TANG J., SUN W., TANG H., RADOSZ M., SHEN Y., Enhanced CO2 Absorption of Poly(ionic liquid)s, Macromolecules 2005, 38, 2037.
  • [21] ZHAO Z., DONG H., ZHANG X., The Research Progress of CO2 Capture with Ionic Liquids, Chin. J. Chem. Eng. 2012, 20, 120.
  • [22] TORRALBA-CALLEJA E., SKINNER J., GUTIERREZ-TAUSTE D., CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods, J. Chem. 2013, 1.
  • [23] BARA J., LESSMAN S., GABRIEL C., HATAKEYAMA E., NOBLE R., GIN D., Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes, Ind. Eng. Chem. Res. 2007, 46, 5397.
  • [24] BARA J., HATAKEYAMA E., GABRIEL C., ZENG X., LESSMAN S., GIN D., NOBLE R., Synthesis and light gas separations in cross-linked gemini room-temperature ionic liquid membranes, J. Membr. Sci. 2008, 316, 186.
  • [25] CARLISLE T., NICODEMUS G., GIN D., NOBLE R., CO2/light gas separation performance of crosslinked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content, J. Membr. Sci. 2012, 397, 24.
  • [26] WARD J., FURMAN K., PEPPAS N., Effect of Monomer Type and Dangling End Size on Polymer Network Synthesis, J. Appl. Polym. Sci. 2003, 89, 3506.
  • [27] SNEDDEN P., COOPER A., SCOTT K., WINTERTON N., Cross-Linked Polymer-Ionic Liquid Composite Materials, Macromolecules 2003, 36, 4549.
  • [28] ZARZYKA I., PYDA M., LORENZO M., Influence of crosslinker and ionic comonomer concentration on glass transition and demixing/mixing transition of copolymers poly(N-isopropylacrylamide) and poly(sodium acrylate) hydrogels, Colloid Polym. Sci. 2014, 292, 485.
  • [29] ORTEGA A., KASPRZAK S., YAKACKI C., DIANI J., GREENBERG A., GALL K., Structure-Property Relationships in Photopolymerizable Polymer Networks: Effect of Composition on the Crosslinked Structure and Resulting Thermomechanical Properties of (Meth)acrylate-Based System, J. Appl. Polym. Sci. 2008, 110, 1559.
  • [30] TANG J., TANG H., SUN W., RADOSZ M., SHEN Y., Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s, Polymer 2005, 46, 12460.
  • [31] YU G., LI Q., LI N., MAN Z., PU C., ASUMANA C., CHEN X., Synthesis of New Crosslinked Porous Ammonium-Based Poly(ionic liquid) and Application in CO2 Adsorption, Pol. Eng. Sci. 2014, 59.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-005b6e39-9b33-404f-8e3d-dfd51bcda1f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.