PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forecasting method of electric vehicle charging load based on virtual prediction parameter estimation strategy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to deal with the threat of the randomness of large-scale electric vehicle (EV) loads to the safe and economic operation of the distribution network effectively, a forecasting method of EV loads based upon virtual prediction parameter estimation strategy is proposed. Firstly, an in-depth analysis is conducted to thoroughly examine the applicability and target audience of various existing power user load forecasting methods. This initial phase provided a solid foundation for the introduction of the new methods. Secondly, utilizing the Monte Carlo simulation method, a charging load forecasting approach that considers both spatial and temporal distribution is developed. This method effectively captures the diversity of EV charging behaviors by leveraging virtual parameter estimation, integrating insights from historical data into future load predictions, thereby enhancing forecasting accuracy. Finally, to validate the effectiveness of this groundbreaking approach, comprehensive testing was conducted on the MATLAB R2017a simulation platform. This verification phase not only serves to demonstrate the method’s accuracy, but also underscores its practicality and reliability in real-world applications.
Rocznik
Strony
355--372
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr., wz.
Twórcy
  • Electric Power Research Institute, Guizhou Power Grid Co., Ltd, Guiyang China
autor
  • Electric Power Research Institute, Guizhou Power Grid Co., Ltd, Guiyang China
autor
  • Electric Power Research Institute, Guizhou Power Grid Co., Ltd, Guiyang China
autor
  • Electric Power Research Institute, South Power Grid Co., Ltd, Guangzhou, China
autor
  • Electric Power Research Institute, Guizhou Power Grid Co., Ltd, Guiyang China
autor
  • Electric Power Research Institute, Guizhou Power Grid Co., Ltd, Guiyang China
Bibliografia
  • [1] Ge G., Tang J., Liu J. et al., EV Charging Behavior Simulation and Analysis Using Real-World Charging Load Data, 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES), Beijing, China, pp. 1726–1731 (2022), DOI: 10.1109/SPIES55999.2022.10082436.
  • [2] Tang S., Mu Y., Zhou Y. et al., A Spatial-temporal Electric Vehicle Charging Load Forecasting Method Considering the Coordination among the Multiple Charging Behaviors, 2021 Power System and Green Energy Conference (PSGEC), Shanghai, China, pp. 629–634 (2021), DOI: 10.1109/PSGEC51302.2021.9542354.
  • [3] Wang X., Xia M., Deng W., MSRN-Informer: Time Series Prediction Model Based on Multi-Scale Residual Network, IEEE Access, vol. 11, pp. 65059–65065 (2023), DOI: 10.1109/ACCESS.2023.3289824.
  • [4] Khalil S., Inductive Transfer and Deep Neural Network Learning-Based Cross-Model Method for Short-Term Load Forecasting in Smarts Grids, Canadian Journal of Electrical and Computer Engineering, vol. 46, no. 2, pp. 157–169 (2023), DOI: 10.1109/ICJECE.2023.3253547.
  • [5] Wen X., Li W., Time series prediction based on LSTM-attention-LSTM model, IEEE Access, vol. 11, pp. 48322–48331 (2023), DOI: 10.1109/ACCESS.2023.3276628.
  • [6] Zhang T., Zhang W., Zhao Q. et al., Adaptive Particle Filter with Randomized Quasi-Monte Carlo Sampling for Unbalanced Distribution System State Estimation, IEEE Transactions on Instrumentation and Measurement, vol. 11, pp. 42981–42990 (2023), DOI: 10.1109/TIM.2023.3276002.
  • [7] Caro E., Juan J., Nouhitehrani S., Optimal Selection of Weather Stations for Electric Load Forecasting, IEEE Access, vol. 11, pp. 42981–42990 (2023), DOI: 10.1109/ACCESS.2023.3270933.
  • [8] Rangelov D., Boerger M., Tcholtchev N. et al., Design and development of a short-term photovoltaic power output forecasting method based on Random Forest, Deep Neural Network and LSTM using readily available weather features, IEEE Access, pp. 41578–41595 (2023), DOI: 10.1109/ACCESS.2023.3270714.
  • [9] Zhou H., Wang J., Ouyang F. et al., A Two-Stage method for Ultra-Short-Term PV Power Forecasting based on Data-Driven, IEEE Access, vol. 11, pp. 41175–41189 (2023), DOI: 10.1109/ACCESS.2023.3267515.
  • [10] Xu H., Fan G., Kuang G. et al., Construction and application of short-term and mid-term power system load forecasting model based on hybrid deep learning, IEEE Access, vol. 11, pp. 37494–37507 (2023), DOI: 10.1109/ACCESS.2023.3266783.
  • [11] Chen X., Chen W., Dinavahi V. et al., Short-Term Load Forecasting and Associated Weather Variables Prediction Using ResNet-LSTM Based Deep Learning, IEEE Access, vol. 11, pp. 5393–5405 (2023), DOI: 10.1109/ACCESS.2023.3236663.
  • [12] Zhang X., Chan K.W., Li H. et al., Deep-learning-based probabilistic forecasting of electric vehicle charging load with a novel queuing model[J], IEEE transactions on cybernetics, vol. 51, no. 6, pp. 3157–3170 (2020), DOI: 10.1109/TCYB.2020.2975134.
  • [13] Mellit A., Arab A.H., Khorissi N. et al., An ANFIS-Based Forecasting for Solar Radiation Data from Sunshine Duration and Ambient Temperature, IEEE Power Engineering Society General Meeting, Tampa, FL, USA, pp. 1–6 (2007), DOI: 10.1109/PES.2007.386131.
  • [14] Sera D., Teodorescu R., Hantschel J. et al., Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions, IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2629–2637 (2008), DOI: 10.1109/TIE.2008.924036.
  • [15] Yijia Cao, Shengwei Tang, Canbing Li et al., An Optimized EV Charging Model Considering TOU Price and SOC Curve, IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 388–393 (2012), DOI: 10.1109/TSG.2011.2159630.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-005b27f7-1b62-49bd-93b3-6fb7c8f2f319
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.