PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffusive and Displacive Phase Transformations in Nanocomposites under High Pressure Torsion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The high-pressure torsion (HPT) of Ti-Fe alloys with different iron content has been studied at 7 GPa, 5 anvil rotations and rotation speed of 1 rpm. The alloys have been annealed before HPT in such a way that they contained different amounts of α/α' and β phases. In turn, the β phase contained different concentration of iron. The 5 anvil rotations correspond to the HPT steady-state and to the dynamic equilibrium between formation and annihilation of microstructure defects. HPT leads to the transformation of initial α/α' and β-phases into mixture of α and high-pressure ω-phase. The α → ω and β → ω phase transformations are martensitic, and certain orientation relationships exist between α and ω as well as β and ω phases. However, the composition of ω-phase is the same in all samples after HPT and does not depend on the composition of β-phase (which is different in different initial samples). Therefore, the martensitic (diffusionless) transformations are combined with a certain HPT-driven mass-transfer. We observed also that the structure and properties of phases (namely, α-Ti and ω-Ti) in the Ti – 2.2 wt. % Fe and Ti – 4 wt. % Fe alloys after HPT are equifinal and do not depend on the structure and properties of initial α'-Ti and β-Ti before HPT.
Twórcy
autor
  • Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia
  • Russian Academy of Sciences, Scientific Center in Chernogolovka, Chernogolovka, Russia
  • Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Eggenstein-Leopoldshafen, Germany
  • National University of Science and Technology «MISIS», Moscow, Russia
  • Russian Academy of Sciences, Scientific Center in Chernogolovka, Chernogolovka, Russia
  • Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Eggenstein-Leopoldshafen, Germany
autor
  • Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia
autor
  • Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia
  • Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Eggenstein-Leopoldshafen, Germany
autor
  • Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Eggenstein-Leopoldshafen, Germany
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str. 25, 30-059 Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str. 25, 30-059 Cracow, Poland
Bibliografia
  • [1] R. Z. Valiev, R. K. Islamgaliev, I. Alexandrov, Progr. Mater. Sci. 45, 103 (2000).
  • [2] W. Lojkowski, M. Djahanbakhsh, G. Burkle, S. Gierlotka, W. Zielinski, H. J. Fecht, Mater. Sci. Eng. A 303, 197 (2001).
  • [3] V. G. Gavriljuk, Mater. Sci. Eng. A 345, 81 (2003).
  • [4] X. Sauvage, F. Wetscher, P. Pareige, Acta Mater. 53, 2127 (2005).
  • [5] B. B. Straumal, B. Baretzky, A. A. Mazilkin, F. Phillipp, O. A. Kogtenkova, M. N. Volkov, R. Z. Valiev, Acta Mater. 52, 4469 (2004).
  • [6] A. A. Mazilkin, B. B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S. G. Protasova, O. A. Kogtenkova, R. Z.Valiev, Acta Mater. 54, 3933 (2006).
  • [7] B. B. Straumal, S. G. Protasova, A. A. Mazilkin, E. Rabkin, D. Goll, G. Schütz, B. Baretzky, R. Valiev, J. Mater. Sci. 47, 360 (2012).
  • [8] B. B. Straumal, A. R. Kilmametov, Yu. O. Kucheev, L. Kurmanaeva, Yu. Ivanisenko, B. Baretzky, A. Korneva, P. Zięba, D. A. Molodov, Mater. Lett. 118, 111 (2014).
  • [9] B. Straumal, R. Valiev, O. Kogtenkova, P. Zieba, T. Czeppe, E. Bielanska, M. Faryna, Acta Mater. 56, 6123 (2008).
  • [10] C. M. Cepeda-Jiménez, J. M. García-Infanta, A. P. Zhilyaev, O. A. Ruano, F. Carreño, J. Alloys Comp. 509, 636 (2011).
  • [11] Y. Ivanisenko, W. Lojkowski, R. Z. Valiev, H. J. Fecht, Acta Mater. 51, 5555 (2003).
  • [12] B. B. Straumal, A. A. Mazilkin, S. G. Protasova, S. V. Dobatkin, A. O. Rodin, B. Baretzky, D. Goll, G. Schütz, Mater. Sci. Eng. A 503, 185 (2009).
  • [13] V. V. Sagaradze, V. A. Shabashov, Nanostruct. Mater. 9, 681 (1997).
  • [14] S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono, Acta Mater. 55, 2885 (2007).
  • [15] B. B. Straumal, S. V. Dobatkin, A. O. Rodin, S. G. Protasova, A. A. Mazilkin, D. Goll, B. Baretzky, Adv. Eng. Mater. 13, 463 (2011).
  • [16] A. V. Sergueeva, C. Song, R. Z. Valiev, A. K. Mukherjee, Mater. Sci. Eng. A 339, 159 (2003).
  • [17] S. D. Prokoshkin, I. Yu. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, E. V. Tatyanin, V. V. Stolyarov, E. A. Prokofiev, Acta Mater. 53, 2703 (2005).
  • [18] X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D. H. Ping, K. Hono, Acta Mater. 49, 389 (2001).
  • [19] T. Miyazaki, D. Terada, Y. Miyajima, C. Suryanarayana, R. Murao, Y. Yokoyama, K. Sugiyama, M. Umemoto, T. Todaka, N. Tsuji, J. Mater. Sci. 46, 4296 (2011).
  • [20] A. A. Mazilkin, G. E. Abrosimova, S. G. Protasova, B. B. Straumal, G. Schütz, S. V. Dobatkin, A. S. Bakai, J. Mater. Sci. 46, 4336 (2011).
  • [21] B. B. Straumal, A. A. Mazilkin, S. G. Protasova, D. Goll, B. Baretzky, A. S. Bakai, S. V. Dobatkin, Kovove Mater. - Metall. Mater. 49, 17 (2011).
  • [22] A. M. Glezer, M. R. Plotnikova, A. V. Shalimova, S. V. Dobatkin, Bull. Russ. Ac. Sci. Phys. 73, 1233 (2009).
  • [23] G. E. Abrosimova, A. S. Aronin, S. V. Dobatkin, S. D. Kaloshkin, D. V. Matveev, O. G. Rybchenko, E. V. Tatyanin, I. I. Zverkova, J. Metastab. Nanocryst. Mater. 24, 69 (2005).
  • [24] P. Henits, Á. Révész, A. P. Zhilyaev, Zs. Kovács, J. Alloys Comp. 461, 195 (2008).
  • [25] B. B. Straumal, V. Pontikis, A. R. Kilmametov, A. A. Mazilkin, S. V. Dobatkin, B. Baretzky, Acta Mater. 122, 60 (2017).
  • [26] S. D. Prokoshkin, I. Yu. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, E. V. Tatyanin, V. V. Stolyarov, E. A. Prokofiev, Acta Mater. 53, 2703 (2005).
  • [27] C. X. Huang, G. Yang, Y. L. Gao, S. D. Wu, S. X. Li, J. Mater. Res. 22, 724 (2007).
  • [28] T. Waitz, W. Pranger, T. Antretter, F. D. Fischer, H. P. Karnthaler, Mater. Sci. Eng. A 481, 479 (2008).
  • [29] S. Jiang, Y. Zhang, L. Zhao, Y. Zheng, Intermetallics 32, 344 (2013).
  • [30] Yu. Ivanisenko, A. Kilmametov, H. Roesner, R. Z. Valiev, Int. J. Mater. Res. 99, 36 (2008).
  • [31] B. B. Straumal, A. R. Kilmametov, G. A. López, I. López-Ferreño, M. L. Nó, J. San Juan, H. Hahn, B. Baretzky, Acta Mater. 125, 274 (2017).
  • [32] A. Kilmametov, Yu. Ivanisenko, B. B. Straumal, A. A. Mazilkin, A. S. Gornakova, M. J. Kriegel, O. B. Fabrichnaya, D. Rafaja, H. Hahn, Scripta Mater. 136 (2017) 46.
  • [33] A. Kilmametov, Yu. Ivanisenko, A. A. Mazilkin, B. B. Straumal, A. S. Gornakova, O. B. Fabrichnaya, M. J. Kriegel, D. Rafaja, H. Hahn, Acta Mater. 144, (2018) 337.
  • [34] B. B. Straumal, A. R. Kilmametov, Yu. Ivanisenko, A. A. Mazilkin, R. Z. Valiev, N. S. Afonikova, A. S. Gornakova, H. Hahn, J. Alloys Comp. 735, (2018) 2281.
  • [35] A. R. Kilmametov, Yu. Ivanisenko, B. B. Straumal, A. S. Gornakova, A. A. Mazilkin, H. Hahn, Metals 8, 1 (2018).
  • [36] B. B. Straumal, A. R. Kilmametov, Yu. Ivanisenko, A. S. Gornakova, A. A. Mazilkin, M. J. Kriegel, O. B. Fabrichnaya, B. Baretzky, H. Hahn, Adv. Eng. Mater. 17, 1835 (2015).
  • [37] Y. Ivanisenko, A. Kilmametov, H. Roesner, R. Z. Valiev, Int. J. Mater. Res. 99, 36 (2008).
  • [38] B. B. Straumal, A. S. Gornakova, A. A. Mazilkin, O. B. Fabrichnaya, M. J. Kriegel, B. Baretzky, J.-Z. Jiang, S. V. Dobatkin, Mater. Lett. 81, 225 (2012).
  • [39] R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, J. Mater. Res. 17, 5 (2002).
  • [40] Scientific Group Thermodata Europe (SGTE), Thermodynamic Properties of Inorganic Materials, Landolt-Börnstein Group IV (Physical Chemistry) 19, Subvolume B Binary Systems, Part 3 Binary Systems from Cs-K to Mg-Zr, Springer Berlin/Heidelberg, 2005.
  • [41] T. Sato, S. Hukai, Y. C. Huang, J. Austral. Inst. Met. 5 (2), 149 (1960).
  • [42] P. Duwez, Trans. Am. Soc. Met. 45, 934 (1953).
  • [43] D. H. Polonis, J. G. Parr, Trans. Am. Inst. Min. Met. Eng. 200, 1148 (1954).
  • [43] Y. N. Gridnev, Yu. N. Petrov, V. A. Rafalovskiy, Vopr. Fiz. Met. Metalloved. AN UkrSSR Sb. Nauchn. Rabot 11, 82 (1960) in Russian.
  • [45] W. Pitsch, A. Schrader, Arch. Eisenhüttenwes. 29, 715 (1958).
  • [46] U. Dahmen, Acta Metall. Mater. 30, 63 (1982).
  • [47] H. Kaneko, Y. C. Huang, J. Jpn. Inst. Met. 27, 1393 (1963).
  • [48] V. N. Moiseev, Met. Sci. Heat. Treat. 11, 335 (1969).
  • [49] J. L. Murray, Bull. Alloy Phase Diagr. 2, 32 (1981).
  • [50] U. Zwicker, Titan und Titanlegierungen. Springer, Berlin, 1974.
  • [51] S. K. Sikka, Y. K. Vohra, R. Chidambaram, Prog. Mater. Sci. 27, 245 (1982).
  • [52] B. S. Hickman, J. Mater. Sci. 4, 554 (1969).
  • [53] M. B. Kerber, M. Zehetbauer, E. Schafler, F. C. Spieckermann, S. Bernstorff, T. Ungar, JOM 63, 61 (2011).
  • [54] A. R. Kilmametov, G. Vaughan, A. R. Yavari, A. LeMoulec, W. J. Botta, R. Z. Valiev, Mater. Sci. Eng. A 503, 10 (2009).
  • [55] J.-J. Fundenberger, A. Morawiec, E. Bouzy, Solid State Phen. 105, 37 (2005).
  • [56] A. Kobler, A. Kashiwar, H. Hahn, C. Kübel, Ultramicroscopy 128, 68 (2013).
  • [57] D. Errandonea, Y. Meng, M. Somayazulu, D. Häusermann, Physica B 355, 116 (2005).
  • [58] D. R. Trinkle, R. G. Hennig, S. G. Srinivasan, D. M. Hatch, M. D. Jones, H. T. Stokes, R. C. Albers, J. W. Wilkins, Phys. Rev. Lett. 91, 025701 (2003).
  • [59] S. Banerjee, P. Mukhopadhyay, Phase transformations: examples from titanium and zirconium alloy, Elsevier, Amsterdam, 2010.
  • [60] A. R. Kutsar, M. N. Pavlovskii, V. V. Komissarov, JETP Lett. 35, 108 (1982).
  • [61] J. C. Jamieson, Science 140, 72 (1963).
  • [62] A. Jayaraman, W. Klement, G. C. Kennedy, Phys. Rev. 131, 644 (1963).
  • [63] M. P. Usikov, V. A. Zilbershtein, Phys. Status Sol. A 19, 53 (1973).
  • [64] H. Xia, G. Parthasarathy, H. Luo, Y. K. Vohra, A. L. Ruoff, Phys. Rev. B 42, 6736 (1990).
  • [65] J. Z. Zhang, Y. S. Zhao, R. S. Hixson, G. T. Gray, L. P. Wang, U. Wataru, H. Saito, T. Hattori, J. Phys. Chem. Sol. 69, 2559 (2008).
  • [66] N. Velisavljevic, S. MacLeod, H. Cynn. Titanium alloys at extreme pressure conditions. In: Titanium Alloys - Towards Achieving Enhanced Properties for Diversified Applications. (Ed. N. Amin), InTech, 67-86, Rijeka, Croatia 2012.
  • [67] G. I. Nosova, N. B. D’yakonova, I. V. Lyasotskii, Metal Sci. Heat Treat. 48, 421 (2006).
  • [68] V. S. Kraposhin, N. B. D’yakonova, I. V. Lyasotskii, Y. Wan, Metal Sci. Heat Treat. 48, 421 (2006).
  • [69] G. I. Nosova, Phase Transformations in Titanium Alloys [in Russian], Metallurgiya, Moscow (1968).
  • [70] Yu. A. Bagaryatskii, G. I. Nosova, T. V. Tagunova, Dokl. Akad. Nauk SSSR 32, 1225 (1955).
  • [71] P. D. Frost, W. M. Parris, L. L. Hirsh, J. R. Doig, C. M. Schwartz, Trans. Am. Soc. Metals 46, 231 (1954).
  • [72] B. A. Hatt, J. A. Roberts, Acta Metall. 8, 575 (1960).
  • [73] D. De Fontaine, N. E. Paton, J. C. Williams, Acta Metall. 19, 1153 (1971).
  • [74] K. K. Mc Cabe, S. L. Sass, Philos. Mag. 23, 957 (1971).
  • [75] I. V. Lyasotskii, N. B. D’yakonova, Yu. D. Tyapkin, Dokl. Akad. Nauk SSSR 237 (3), 81 (1977).
  • [76] B. W. Levinger, Trans. Am. Inst. Min. Met. Eng. 197, 195 (1953).
  • [77] L. N. Guseva, L. K. Dolinskaya, Izv. Akad. Nauk SSSR Met. 6, 195 (1974).
  • [78] L.-F. Huang, B. Grabowski, E. McEniry, D. R. Trinkle, J. Neugebauer, Phys. Status Solidi B 252, 1907 (2015).
  • [79] A. V. Dobromyslov, V. A. Elkin, Scripta Mater. 44, 905 (2001).
  • [80] A. V. Dobromyslov, V. A. Elkin, Mater. Sci. Eng. A 438, 320 (2006)
  • [81] T. Ungar, E. Schafler, P. Hanak, S. Bernstorff, M. Zehetbauer, Mater. Sci. Eng. 462, 398 (2007).
  • [82] T. Ungár, E. Schafler, P. Hanák, S. Bernstorff, M. Zehetbauer, Zeitschrift Metallkd. 96, 578 (2005).
  • [83] L. von Bertalanffy, Science 111, 23 (1950).
  • [84] D. A. Molodov, B. B. Straumal, L. S. Shvindlerman, Scripta Metall. 18, 207 (1984).
  • [85] B. B. Straumal, L. M. Klinger, L. S. Shvindlerman, Scripta Metall. 17, 275 (1983).
  • [86] G. A. López, E. J. Mittemeijer, B. B. Straumal, Acta Mater. 52, 4537 (2004).
  • [87] A. S. Gornakova, S. I. Prokofiev, K. I. Kolesnikova, B. B. Straumal, Russ. J. Non-Ferrous Met. 56, 229 (2016).
  • [88] A. S. Gornakova, S. I. Prokofiev, B. B. Straumal, K. I. Kolesnikova, Russ. J. Non-Ferrous Met. 57, 703 (2016).
Uwagi
EN
1. This work was partially supported by Ministry of Education and Science of the Russian Federation in the framework of the Program to Increase the Competitiveness of NUST "MISiS”, the National Science Centre of Poland (grant OPUS, DEC-2017/27/B/ST8/01092), the state task of ISSP RAS and SCC RAS, by the Russian Foundation for Basic Research (grants 16-03-00285, 16-53-12007 and 18-03-00067), by Deutsche Forschungsgemeinschaft (project numbers RA 1050/20-1, IV 98/5-1, HA 1344/32-1, FA 999/1-1) as well as by the Karlsruhe Nano Micro Facility (KNMF, www.knmf.kit.edu).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-005ab65d-31b4-4801-945a-fcf46cd69145
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.