PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the Level of Residual Stress in Wires with a Magnetic Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena poziomu naprężeń własnych w drutach metodą magnetyczną
Języki publikacji
EN
Abstrakty
EN
Residual stress present in wires after drawing process affects their magnetic properties. The paper presents a concept to estimate the level of residual stress on the basis of measurements of hysteresis loops. In order to describe the effect qualitatively the Jiles-Atherton-Sablik description is adapted. On the basis of variations in hysteresis loop shapes the average values of residual stress in wires for different single draft values are determined. It was found that the estimated average values by magnetic stresses are comparable with the results of numerical modeling and experimental studies.
PL
Naprężenia własne istniejące w drutach po procesie ciągnienia mają wpływ na ich właściwości magnetyczne. W pracy przedstawiono koncepcję oszacowania poziomu naprężeń własnych drutów na podstawie pomiarów pętli histerezy. W celu jakościowego opisu zjawiska zaadaptowano model Jilesa-Athertona-Sablika. Na podstawie zmian kształtu pętli histerezy oszacowano średnie wartości naprężeń własnych dla drutów ciągnionych z różnymi wartościami gniotu pojedynczego. Stwierdzono, że oszacowane metodą magnetyczną średnie wartości naprężeń własnych są porównywalne z wynikami z modelowania numerycznego i badań eksperymentalnych.
Twórcy
autor
  • Częstochowa University of Technology, Institute of Metal Forming and Safety Engineering, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
  • Częstochowa University of Technology, Institute of Telecommunication and Electromagnetic Compatibility, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
autor
  • Częstochowa University of Technology, Institute of Electric Power Engineering, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
  • [1] S.-K. Lee, D.-W. Kim, M.-S. Jeong, B.-M. Kim, Evaluation of axial surface residual stress in 0.82-wt% carbon steel wire during multi-pass drawing process considering heat generation, Mater. Design 34, 363-371 (2012).
  • [2] M. Suliga, Analysis of the multipass steel wire drawing with high speed in conventional and hydrodynamic dies (in Polish), Series Monographs No. 32, Częstochowa University of Technology 2013, ISBN 978-83-63989-06-4.
  • [3] J. M. Atienza, M. Elices, Influence of residual stresses in the tensile test of cold drawn wires, Mater. Struct. 36, 548-552 (2003).
  • [4] J. M. Atienza, M. Elices, Influence of residual stresses in the stress relaxation of cold drawn wires, Mater. Struct. 37, 301-304 (2004).
  • [5] T. Lambert, J. Wojnarowski, Mechaniczne metody pomiaru osiowych naprężeń własnych w drutach stalowych, Zesz. Nauk. Pol. Śląskiej seria Hutnictwo 1, 3-16 (1971).
  • [6] M. Suliga, The theoretical and experimental analyses of the influence of single draft on properties of rope wires, Arch. Metall. Mater. 57 (4), 1021-1030 (2012).
  • [7] M. Suliga, K. Chwastek, P. Pawlik, The hysteresis loop as the indicator of residual stress in drawn wires, Nondestruct. Test. Eval. 29 (2), 123-132 (2014).
  • [8] A. Iványi, Hysteresis models in electromagnetic computation. Akademiai Kiadó, Budapest 1997.
  • [9] D. C. Jiles, D. L. Atherton Ferromagnetic hysteresis, IEEE T. Magn. 19, 2183-2185 (1983).
  • [10] D. L. Atherton, D. C. Jiles, Effects of stress on the magnetization of steel, IEEE T. Magn. 19, 2021-2023 (1983).
  • [11] D. C. Jiles, D. L. Atherton, Theory of the magnetization process in ferromagnets and its application to the magnetomechanical effect, J. Phys. D: Appl. Phys. 17, 1265-1281 (1984).
  • [12] D. L. Atherton, J. A. Szpunar, Effect of stress on magnetization and magnetostriction in pipeline steel, IEEE T. Magn. 22, 514-516 (1986).
  • [13] M. J. Sablik, H. Kwun, G. L. Burkhardt, D. C. Jiles, Model for the effect of tensile and compressive stress on ferromagnetic hysteresis, J. Appl. Phys. 61 (8), 3799-3801 (1987).
  • [14] M. J. Sablik, D. C. Jiles, Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis, IEEE T. Magn. 29, 2113-2123 (1993).
  • [15] K. J. Stevens, Stress dependence of ferromagnetic hysteresis for two grades of steel, NDT&E Int. 33, 111-121 (2000).
  • [16] B. Augustyniak, Zjawiska magnetosprężyste i ich wykorzystanie w nieniszczących badaniach materiałów, Seria Monografie 38, Gdańsk 2003.
  • [17] T. Suzuki, E. Matsumoto, Comparison of Jiles-Atherton and Preisach models extended to stress dependence in magnetoe-lastic behaviors of a ferromagnetic material, J. Mater. Process. Tech. 161, 141-145 (2005).
  • [18] D. Jackiewicz, R. Szewczyk, J. Salach, Modelowanie charakterystyk magnesowania stali konstrukcyjnych, Pomiary Automatyka Robotyka 2, 552-555 (2012).
  • [19] M. Suliga, L. Borowik, K. Chwastek, P. Pawlik, A non-destructive method to determine residual stress in drawn wires based on magnetic measurements, Przegl. Elektrot. 12, 161-164 (2014).
  • [20] J. Makar, B. K. Tanner, The in situ measurement of the effect of plastic deformation on the magnetic properties of steel. Part 1 - hysteresis loops and magnetostriction, J. Magn. Magn. Mater. 184, 193-208 (1998).
  • [21] H. W. L. Naus, Ferromagnetic hysteresis and the effective field, IEEE T. Magn. 38, 3417-3419 (2002).
  • [22] K. Chwastek, J. Szczygłowski, An alternative method to esti-mate the parameters of Jiles-Atherton model, J. Magn. Magn. Mater. 314, 47-51 (2007).
  • [23] O. Perevertov, Influence of the residual stress on the magneti-zation process in mild steel, J. Phys. D: Appl. Phys. 40, 949 (2007).
  • [24] J. Li, M. Xu, Modified Jiles-Atherton-Sablik model for asym-metry in magnetomechanical effect under tensile and compres-sive stress, J. Appl. Phys. 110, 063918 (2011).
  • [25] Z. D. Wang, Y. Gu, Y. S. Wang, A review of three magnetic NDT technologies, J. Magn. Magn. Mater. 324, 382-388 (2012).
  • [26] M. Roskosz, A. Rusin, M. Bieniek, Analysis of relationships between residual magnetic field and residual stress, Mecchanica 48, 45-55 (2013).
  • [27] D. Jackiewicz, R. Szewczyk, J. Salach, A. Bieńkowski, Application of extended Jiles-Atherton model for modeling the influence of stresses on magnetic characteristics of the con-struction steel, Acta Phys. Pol. A 126 (1), 392-393 (2014).
  • [28] S. Abuku, B. D. Cullity, A magnetic method for the determination of residual stress, Exp. Mech. 11, 217-223 (1971).
  • [29] F. Preisach, Über die magnetische Nachwirkung, Z. Phys. 94, 277-302 (1935).
  • [30] C. Visone, C. Serpico, Hysteresis operators for the modeling of magnetostrictive materials, Physica B 306, 78-83 (2001).
  • [31] Y. Melikhov, D. C. Jiles, I. Tomaš, C. C. Lo, O. Perevertov, J. Kadlecová, Investigation of sensitivity of Preisach analysis for nondenstructive testing, IEEE T. Magn. 37 (6), 3907-3912 (2001).
  • [32] L. Dupre, M. De Wulf, D. Makaveev, V. Permiakov, J. Melkebeek, Preisach modeling of magnetization and magnetostriction processes in laminated SiFe alloys, J. Appl. Phys. 93 (10), 6629-6631 (2003).
  • [33] F. Knap, Naprężenia własne w ciągnionych drutach i w wyrobach z drutu, seria monografie nr 25, Wyd. Politechniki Częstochowskiej, Częstochowa 1991.
  • [34] D. C. Jiles, Introduction to magnetism and magnetic materials, Chapman and Hall, London 1991.
  • [35] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functional, Springer-Verlag, Berlin Heidelberg 1994.
  • [36] S. Attinger, P. Koumoutsakos (Eds.), Multiscale modelling and simulation, Lecture Notes in Computational Science and Engi-neering 39, Springer-Verlag, Berlin Heidelberg 2004.
  • [37] B. Engquist, P. Lötstedt, O. Rundborg (Eds.), Multiscale modeling and simulation in science, Lecture Notes in Computational Science and Engineering 66, Springer-Verlag, Berlin Heidelberg 2009.
  • [38] K. Chwastek, J. Szczygłowski, The effect of anisotropy in the modified Jiles-Atherton model of static hysteresis, Arch. Elektr. Eng. 60 (1), 49-57 (2011).
  • [39] A. P. S. Baghel, S. V. Kulkarni, Hysteresis modeling of the grain-oriented laminations with inclusion of crystalline and textured structure in a modified Jiles-Atherton model, J. Appl. Phys. 113, 043908 (2013).
  • [40] G. Szymański, M. Waszak, Vectorized Jiles-Atherton hysteresis model, Physica B 343, 26-29 (2004).
  • [41] Hao-Miao Zhou, You-He Zhou, Xiao-Jing Zheng, Qiang Ye, Jing Wei, A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials, J. Magn. Magn. Mater. 321, 281-290 (2009).
  • [42] P. Wilson, J. Neil Ross, A. D. Brown, Simulation of magnetic component models in electric circuits including dynamic ther-mal effects, IEEE T. Power Electr. 17, 55-65 (2002).
  • [43] A. Raghunathan, Y. Melikhov, J. E. Snyder, D. C. Jiles, Theoretical model of temperature dependence of hysteresis based on mean field theory, IEEE T. Magn. 46, 1507-1510 (2010).
  • [44] K. Chwastek, Modelling magnetic properties of MnZn ferrites with the modified Jiles-Atherton description, J. Phys. D: Appl. Phys. 43, 015005 (5 pp.) (2010).
  • [45] O. Messal, F. Sixdenier, L. Morel, N. Burais, Temperature dependent extension of the Jiles-Atherton model: study of the variation of microstructural hysteresis parameters, IEEE T. Magn. 48, 2567-2572 (2012).
  • [46] K. Górecki, M. Rogalska, J. Zarębski, K. Detka, Modelling characteristics of ferromagnetic cores with the influence of temperature, J. Phys. Conf. Ser. 494, 012016 (2014).
  • [47] O. Perevertov, Describing the effect of tempering on hysteresis curves of 54SiCr6 spring steel by the effective field model, J. Magn. Magn. Mater. 324, 1645-1648 (2010).
  • [48] D. C. Jiles, D. L. Atherton, Theory of ferromagnetic hysteresis, J. Magn. Magn. Mater. 61, 48-60 (1986).
  • [49] K. Chwastek, J. Szczygłowski, Estimation methods for the Jiles-Atherton model parameters - a review, Prz. Elektrotechn. 12, 145-148 (2008).
  • [50] K. Chwastek, Problems in descriptions of hysteresis, Prz. Elektrotechniczn. 4, 24-27 (2010).
  • [51] K. Chwastek, Higher order reversal curves in some hysteresis models, Arch. Electr. Eng. 61 (4), 455-470 (2012).
  • [52] S. E. Zirka, Yu. I. Moroz, R. G. Harrison, K. Chwastek, On physical aspects of Jiles-Atherton models, J. Appl. Phys. 112, 043916 (2012).
  • [53] R. G. Harrison, A physical model of spin ferromagnetism, IEEE T. Magn. 39 (2), 950-960 (2003).
  • [54] J. Takács, Mathematics of hysteretic phenomena, Wiley-VCH, Weinheim Berlin 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0056da55-da91-4d3c-b018-ca1e0c2388e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.