PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solution to determine the working time at the mechanised longwall in the natural condition of Quangninh coal seam, Vietnam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vietnam is currently unable to generate nuclear power, and coal still accounts for 32 percent of national energy production. Therefore, mining coal plays a crucial role in the national economy. On the other hand, all open pit coal mines in Quang Ninh will be closed to give the land back to the other industrial section, so the underground mines will be responsible for supporting the entire amount of coal, which is extremely difficult. Therefore, it must mechanise mining to increase output. The research of applicability has been implemented for a long time. Now, Vietnamese workers can operate domestic equipment. However, most mining plans are established from experience and imposed, so this hardly shows the construction reality in the underground mines. Indicators must be manually adjusted to match the previously established documents. This not only causes administrative risks but also wastes time and human resources in handling paperwork, leading to reduced labour productivity indirectly. The key to a mining plan is time, therefore the article analyses the influence of uncertain mining conditions on the construction time. As a result, different working time parameters are determined suitably for different conditions, space, and construction time. The difference between actual construction time and ideal construction time is also made out. The mentioned results are a scientific basis for mine operators to adjust production plans appropriately to the characteristics of underground mines.
Rocznik
Strony
575--594
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
  • University of Mining and Geology, Faculty of Mining, 18 Vien Street, Duc Thang Ward, Bac Tu Liem Distric, Hanoi, Vietnam
  • University of Mining and Geology , Faculty of Geomatics and Land Administration, 18 Vien Street, Duc Thang Ward, Bac Tu Liem Distric, Hanoi, Vietnam
  • University of Mining and Geology, Faculty of Mining, 18 Vien Street, Duc Thang Ward, Bac Tu Liem Distric, Hanoi, Vietnam
  • University of Mining and Geology, Faculty of Mining, 18 Vien Street, Duc Thang Ward, Bac Tu Liem Distric, Hanoi, Vietnam
  • University of Mining and Geology, Faculty of Mining, 18 Vien Street, Duc Thang Ward, Bac Tu Liem Distric, Hanoi, Vietnam
Bibliografia
  • [1] Amit Kumar gorai, Snehamoy chatterjee, Optimization Techniques and their Applications to Mine Systems. Book, Description: Bocaraton: crc Press, 2022. includes bibliographical references and index. identifiers: Lccn2022002805 ISBN 9781032060989 (hardback) ISBN 9781032060996 (paperback) ISBN 9781003200703(ebook).
  • [2] A.S. Nhleko, T. Tholana, P.n. Neingo, A review of underground stope boundary optimization algorithms. resour.Policy 56 (July), 59-69 (2018). DOI: https://doi.org/10.1016/j.resourpol.2017.12.004.
  • [3] A. Badri, S. Nadeau, A. Gbodossou, A new practical approach to risk management for underground mining projectin Quebec. Journal of Loss Prevention in the Process Industries 26, 6, 1145-1158 november (2013).
  • [4] Agus Hotlan Napitu, Design of Performance Management System for underground Mining construction using Integrated Performance Management System. Journal of Economics, Business and Management 5, 9, 314-323September (2017). DOi: https://doi.org/10.18178/joebm.2017.5.9.532.
  • [5] c. Alford, M. Brazil, D. Lee, Optimisation in underground mining. handbook of Operations research in natural resources 99, 561-577 (2007).
  • [6] M. Bilodeau, Y.H. Park, computer aided mine investment analysis. APCOM, Balkema, p. 83-102 (1988).
  • [7] Binoy K. Samanta, Arun B. Samaddar, Formulation of coal mining projects by expert system. Journal of Mines, Metals and Fuels, ISSN 0022-2755, June 2002, p. 1-10. 202 Kolkata.
  • [8] Blake Murill, Chris Pinckney, Management Online: Mining The full Potential of the intranet. Leadership and Management in Engineering 48-149 (2003). DOi: https://doi.org/118.71.25.30 on 08/14/21.
  • [9] B. Calzada Olvera, innovation in mining: what are the challenges and opportunities along the value chain for Latin American suppliers. Miner. Econ. 35, 35-51 (2022). DOi: https://doi.org/10.1007/s13563-021-00251-w.
  • [10] Doreen A. Thomas, M. Brazil, D.H. Lee, N.C. Wormald, network modelling of underground mine layout: Twocase studies. Arc Special research centre for ultra-Broadband information networks (CUBIN). University of Waterloo, Waterloo On N2L 3G1, Canada.
  • [11] Dung Van Nguyen, Dung Tien Thai Vu, Chi Van Dao, Tung Manh Bui, Hung Phi Nguyen, Quang Tien Vu Setup, Knotting model to determine influencing factors and effective working time in the organizational structure of mechanized longwall production. Journal of Mining and Earth Sciences, 31-37 (2019). ISSN 1859-1469.
  • [12] Dung Van Nguyen, Hung Phi Nguyen, Tan Manh Do, Experimental Study on the Efficacy of Water infusion for underground Mining of a Coal Seam. Applied Sciences 9, 3820 (2019).DOi: https://doi.org/10.3390/app9183820.
  • [13] G.H. Lind, Activity Based costing: challenging the way we cost underground coal mining systems. The South African institute of Mining and Metallurgy 2001. SA ISSN 0038–223X/3.00 + 0.00. pp 77-82.DOi: https://doi.org/10.1080/25726668.2019.1603920.
  • [14] N. Grieco, R. Dimitrakopoulos, Managing grade risk in stope design optimisation: probabilistic mathematical programming model and application in sublevel stoping. Min. Technol. 116 (2), 49-57(2007).
  • [15] R. Howes, C. Forrest, Short interval control in Today’s underground Mine: A case Study. Presentation in Min Expointernational, Las Vegas (2012).
  • [16] Jie Hou, Chaoshui Xu, Peter Alan Dowd, Guoqing Li, Integrated optimisation of stope boundary and access layout for underground mining operations. Mining Technology 128, 4 (2019).DOi: https://doi.org/10.1080/25726668.2019.1603920.
  • [17] M. Vanek, K. Spakovska, M. Mikola′s, L. Pomothy, Continuous improvement management for mining companies.The Southern African institute of Mining and Metallurgy, p. 119-124 (2015). ISSN 2225-6253.
  • [18] S.A. Kenzap, L.J. Peloquin, V.N. Kazakidis, Use of discrete-event simulation for evaluation of quality in hard rockmine lateral development. International Journal of Mineral Resources Engineering 12 (1), 49-72 (2007).
  • [19] Le Quang Phuc, V.P. Zubov, Phung Manh Dac, improvement of the Loading capacity of narrow coal Pillars andcontrol roadway Deformation in the Longwall Mining System. A case Study at Khe cham coal Mine (Vietnam).Journal of the Polish Mineral Engineering Society, p. 115-122 (2020).DOi: https://doi.org/10.29227/iM-2020-02-15.
  • [20] Le Quang Phuc, Cause and Solution to Roadway Deformation in Vietnam Underground Coal Mines. Journal of the Polish Mineral Engineering Society 1, 2, 381-390 (2021). DOi: https://doi.org/10.29227/iM-2021-02-35.
  • [21] J. Little, P. Knights, E. Topal, Integrated optimization of underground mine design and scheduling. J. South Afr. Inst. Min. Metall. 113 (10), 775-785 (2013).
  • [22] L. Montie, r. Dimitrakopoulos, A heuristic approach for the stochastic optimization of mine production schedules. J. Heuristics 397-415 (2017). DOi: https://doi.org/10.1007/s10732-017-9349-6.
  • [23] M. Moretti Fioroni, L.A.G. Franzese, Tales Jefferson Bianchi, L. Ezawa, L.R. Pinto, G. de Miranda, Concurrent simulation and optimization models for mining planning. IEEE Xplore, Winter Simulation conference, Print ISSN: 0891-7736, Electronic ISSN: 1558-4305 (2008). DOi: https://doi.org/10.1109/WSc.2008.4736138.
  • [24] M. Brazil, P. Grossman, J. Hyam Rubinstein, D. Thomas, Improving Underground Mine Access Layouts Using Software Tools. INFORMS Joural on Applied Analytic 44, 2, 195-203, March-April (2014).DOi: http://dx.doi.org/10.1287/inte.2013.0691.
  • [25] M. Kęsek, M. Klaś, A. Adamczyk, A Review of Computer Simulations in Underground and Open-Pit Mining. Journal of the Polish Mineral Engineering Society 46, Part 2, 212-218, December (2015).DOi: https://doi.org/10.29227/iM-2018-02-01.
  • [26] M.N. Moreno García, I. Ramos Román, F.J. García Peñalvo, M. Toro Bonilla, An association rule mining method for estimating the impact of project management policies on software quality, development time and effort. Expert Systems with Applications 34, 522-529 (2008). DOi: https://doi.org/10.1016/j.eswa.2006.09.022.
  • [27] M.L. Smith, Optimizing short-term production schedules in surface mining: integrating mine modeling software with AMPL/CPLEX. International Journal of Surface Mining, Reclamation and Environment 12, 4 (2007).DOi: https://doi.org/10.1080/09208118908944038.
  • [28] Mashudu D. Mbedzi, Huibrecht M. van der Poll ID , John A. van der Poll, An Information Framework for Facilitating cost Saving of Environmental impacts in the coal Mining industry in South Africa. Sustainability 10, 1690(2018). DOi: https://doi.org/10.3390/su10061690.
  • [29] Melih iphara, Serafettin Alpay, A mobile application based on multi-criteria decision-making methods for underground mining method selection. International Journal of Mining, Reclamation and Environment (2018).DOi: https://doi.org/10.1080/17480930.2018.1467655.
  • [30] C. Musingwini, Optimization in underground mine planning-developments and opportunities. J. South Afr. Inst.Min. Metall. 116 (9), 809-820 (2016).
  • [31] Nevzat Kavaklı, Evaluation of mining investment projects with a new software. Arab. J. Geosci. (2014). DOi: https://doi.org/10.1007/s12517-014-1530-8.
  • [32] Nguyen Van Dung, Nguyen Phi Hung, Tan Do, numerical study of pile reinforced slope – A case at Khe Cham coalpreparation construction site project (Vietnam). CIGOS 2019, innovation for Sustainable infrastructure, Lecture notes in civil Engineering 54, (2019). DOi: https://doi.org/10.1007/978-981-15-0802-8_129.
  • [33] N. Doneva, Z. Despodov, D. Mirakovski, M. Hadzi-Nikolova, S. Mijalkovski, cost Analysis in the construction of underground Mining Structures and Opportunities for Their reduction. The Mining-Geology-Petroleum Engineering Bulletin. DOi: https://doi.org/10.17794/rgn.2015.2.1.
  • [34] O. Vandecruys, D. Martens, B. Baesens, c. Mues, M. De Backer, Raf. Haesen, Mining software repositories for comprehensible software fault prediction models. Journal of Systems and Software 81, 5, 823-839, May (2008).DOi: https://doi.org/10.1016/j.jss.2007.07.034.
  • [35] P. Nelwamondo, D Kruger, A project management approach for a mining stope. 3rd young Professionals conference innovation hub, Pretoria, The Southern African institute of Mining and Metallurgy 236-276, 9-10 March(2017).
  • [36] P. Tworek, S. Tchórzewski, P. Valouch, Risk Management in coal-Mines – Methodical Proposal for Polish and Czech hard coal Mining industry. Acta Montanistica Slovaca 23, 1, 72-80 (2018).
  • [37] Projects: Risks and uncertainties. Iberoamerican Journal of Project Management (IJoPM). www.ijopm.org. ISSN2346-9161. 9, 1, A.E.c. 78-90. 2018. DOi: https://doi.org/10.1016/j.jlp.2013.04.014.
  • [38] r. Dimitrakopoulos, N. Grieco, Stope design and geological uncertainty: quantification of risk in conventional designs and a probabilistic alternative. J. Min. Sci. 45 (2), 152-163 (2009).DOi: https://doi.org/10.1007/ s10913-009-0020-y.
  • [39] Ridwan Wibiksana, Adapted for use in Underground Mining Operations. PM World Journal Earned Value Man-agement Vol. I, issue II – September 2012 Ridwan Wibiksana www.pmworldjournal.net.
  • [40] S. Shafiee, E. Topal, M. Nehring, Adjusted real Option Valuation to Maximise Mining Project Value – A case Study using century Mine. Project Evaluation conference Melbourne, Vic, 21-22 April 2009, p. 125-134.
  • [41] A.r. Sayadi, S.M.M. Tavassoli, M. Monjezi, M. Rezaei, Application of neural networks to predict net present value in mining projects. Arab. J. Geosci. 7 (3), 1067-1072 (2014).
  • [42] Serafettin Alpay, Mahmut Yavuz, underground mining method selection by decision making tools. Tunnelling and underground Space Technology 24, 173-184 (2009). DOi: https://doi.org/10.1016/j.tust.2008.07.003.
  • [43] Serafettin Alpay, Mahmut Yavuz, A Decision Support System for underground Mining Method Selection. international conference on industrial, Engineering and Other Applications of Applied intelligent Systems iEA/AiE 2007:new Trends in Applied Artificial intelligence, p. 334-343. DOi: https://doi.org/10.1007/978-3-540-73325-6_33.
  • [44] A. Smit, g. Lane, Mine optimization and its application using the Anglo Platinum Mine Optimisation Tool (AP-MOT). The 4th international Platinum conference, Platinum in transition ‘Boom or Bust’, The Southern African institute of Mining and Metallurgy 317-328 (2010).
  • [45] T. Lupek, h. Mischo, S. Plaum, Building services in underground mines – significance from a cost estimators perspective. SME Annual Meeting feb. 19-22, Denver, CO. 1-6 (2017).
  • [46] W. Tomam Ambromi, Goran Turk, Prediction of subsidence due to underground mining by artificial neural networks.Computers & Geosciences 29, 627-637 (2003). DOi: https://doi.org/10.1016/S0098-3004(03)00044-X.
  • [47] J.V. Visser, The use of information technology in the mineral resource management environment. 31st. International Symposium on Application of Computers and Operations Research in the Mineral Industries, APCOM, Johannesburg, The republic of South Africa, 47-58(2003).
  • [48] Zhen Song, Håkan Schunnesson, Mikael Rinne, John Sturgu, An Approach to Realizing Process Control for Underground Mining Operations of Mobile Machines. PLOS ONE (2015).DOi: https://doi.org/10.1371/journal.pone.0129572.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0056d4fd-55c2-4632-8ae9-55154c439aa0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.