PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Testing surveillance thermal imagers under simulated real work conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal imagers often work in extreme conditions but are typically tested under laboratory conditions. This paper presents the concept, design rules, experimental verification, and example applications of a new system able to carry out measurements of performance parameters of thermal imagers working under precisely simulated real working conditions. High accuracy of simulation has been achieved by enabling regulation of two critical parameters that define working conditions of thermal imagers: imager ambient temperature and background temperature of target of interest. The use of the new test system in the evaluation process of surveillance thermal imagers can bring about a revolution in thermal imaging metrology by allowing thermal imagers to be evaluated under simulated, real working conditions.
Rocznik
Strony
art. no. e145327
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr., fot.
Twórcy
  • Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland
Bibliografia
  • [1] MIL-STD-810, Department of Defense Test Method Standard. Environmental Engineering Considerations and Laboratory Tests. (2000).
  • [2] Skurdal, A. FFLIR Recon III thermal imaging camera. Coroflot https://www.coroflot.com/skurdal/FLIR-Recon-III-Thermal-Imaging-Camera
  • [3] EVPU defence electro-optical systems, SUMO-U225 Uncooled Thermal Imaging Camera. EVPÚ Defence. https://www.evpudefence.com/p-sumo-u225-uncooled-thermal-imaging-camera
  • [4] Military MIL-810-STD Vehicle mounted thermal imaging camera. Ascendent Technology Group. https://www.ascendentgroup.com/store/specs/350
  • [5] Stabilized advanced remote weapon platform. Aselsan Innovative Technologies. https://wwwcdn.aselsan.com/api/file/SARP_ENG.pdf
  • [6] Environmental Testing Services Overview. DTB Testing Services. https://www.dtb.com/testing-overview-environmental.php
  • [7] MIL-STD-810 Testing. Element. https://www.element.com/product-qualification-testing-services/mil-std-810-testing
  • [8] Military/Defense Industry Testing. Clark Testing. https://www.clarktesting.com/industries/military-testing.php
  • [9] Military environmental simulation testing. Eurofins E & E North America (2023). https://www.metlabs.com/industries/military/ military-environmental-simulation/
  • [10] Vendt, R. et al. Characterization of thermal imagers under various ambient conditions. Proc. SPIE 7299, 729902 (2009). https://doi.org/10.1117/12.818423
  • [11] Sharma, A. K., Sharma, S. K., Vasistha, P. & Mangalhara, J. P. Effect of ambient temperature on calibration of cooled thermal camera. Def. Sci. J. 67, 173-176 (2017). https://doi.org/10.14429/dsj.67.9820
  • [12] Ghassemi, P., Pfefer, T. J., Casamento, J. P., Simpson, R. & Wang, Q. Best practices for standardized performance testing of infrared thermographs intended for fever screening. PLoS ONE 13, e0203302 (2018). https://doi.org/10.1371/journal.pone.0203302
  • [13] Johnson, W. T., Lavi, M. & Sapir, E. Temperature chamber FLIR and missile test. Infrared Imaging Systems. Proc. SPIE 1488, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing II (1991). https://doi.org/10.1117/12.45815
  • [14] Setting new standards in electro-optical testing. CI-Systems. https://www.ci-systems.com
  • [15] HGH Infrared Systems. www.hgh-infrared.com
  • [16] INFRAMET. www.inframet.com
  • [17] SBIR.gov. https://www.sbir.gov
  • [18] Daiker J. T. Athermalization Techniques in Infrared Systems. Tutorial Opti 521. University of Arizona (2010). https://wp.optics.arizona.edu/optomech/wp-content/uploads/sites/ 53/2016/10/J.-Daiker_521-Tutorial.pdf
  • [19] Materials for Transmission Optics, Germanium. TYDEX. https://www.tydexoptics.com/materials1/for_ transmission_optics/germanium/
  • [20] NATO-STANAG 4347. Definition of nominal static range performance for thermal imaging systems. GlobalSpec (1995). https://standards.globalspec.com/std/518793/STANAG%204347
  • [21] Irwin A, & Nicklin, R. L. Standard software for automated testing of infrared imagers, IR Windows, in practical applications. Proc. SPIE 3377, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IX (1998). https://doi.org/10.1117/12.319374
  • [22] Chrzanowski K. & Hong Viet, N. Virtual MRTD - an indirect method to measure MRTD of thermal imagers using computer simulation. Opt. Appl. 50, 671-688 (2020). https://doi.org/10.37190/oa200413
  • [23] Night Vision Thermal Imaging Systems Performance Model. (US Army Night Vision and Electronic Sensors Directorate, 2001). https://zieg.com/links/sensors/NVThermManual5.pdf
  • [24] Pérez, J, Steiner D. & Keßler, S. Imager performance assessment with TRM4 version 3: an overview. Proc. SPIE 11866, 118660D (2021). https://doi.org/10.1117/12.2597723
  • [25] Tender no. EuropeAid/112618/D/S/PL, Annex II. Technical Specifi-cations. (2004).
  • [26] Tender no. EuropeAid/113665/D/S/PL, Annex II. Technical Specifi-cations. (2004).
  • [27] Tender no. 40/BF/BtiZ/20, Technical Specifications, Border Guards of Poland. (2020). (in Polish)
  • [28] Framework Contract for Provision of Mobile Surveillance Systems for Frontex Operational Activities, Call for tenders question list, page 19. European Border and Coast Guard Agency. (2019). https://etendering.ted.europa.eu/cft/cft-question-downloadPDF.html?cftId=4688
  • [29] Holst, G. C. & Winter, P. Testing and Evaluation of Infrared Imaging Systems. (FL JCD Pub Bellingham, SPIE Optical Engineering Press, 1998).
  • [30] Chrzanowski, K. Testing Thermal Imagers. Practical guide. (Military University of Technology, 2010). https://www.inframet.com/Literature/Testing%20thermal%20imagers.pdf
  • [31] Holst, G. C. Imaging system fundamentals. Opt. Eng. 50, 052601 (2011). https://doi.org/10.1117/1.3570681
  • [32] Holst, G. C. Electro-optical Imaging System Performance. (SPIE-Press, 2008).
  • [33] Chrzanowski, K. Evaluation of infrared collimators for testing thermal imaging systems. Opto-Electron. Rev. 15, 82-87 (2007). https://doi.org/10.2478/s11772-007-0005-9
  • [34] Burge, J. H. OPTI 421/521. Introductory Optomechanical Engineering. (University of Arizona, 2016). https://wp.optics.arizona.edu/optomech/courses/opti-421521-introductory-optomechanical-engineering/
  • [35] Brehm, R., Driessen, J. C., Grootel, P. & Gijsbers, T. G. Low thermal expansion materials for high precision measurement equipment. Precis. Eng. 7, 157-160 (1985). https://doi.org/10.1016/0141-6359(85)90039-X
  • [36] Duncker, H. et al. Ultrastable, Zerodur-based optical benches for quantum gas experiments. Appl. Opt. 53, 4468 (2014). https://doi.org/10.1364/AO.53.004468
  • [37] Infrared Camera Window with PIRma-Lock: FLIR IR Windows. Teledyne FLIR. https://www.flir.eu/products/ir-windows/
  • [38] FLIR IRW (infrared windows) transmission. Teledyne FLIR. https://flir.custhelp.com/app/answers/detail/a_id/2987/related/1
  • [39] Madding, R. P. IR Window Transmittance Temperature Dependence. (Infrared Training Center, FLIR Systems, Inc., 2004). https://exiscan.com/images/files/TechNotes/Madding-IR_window_ Transmittance_Temperature_Dependance.pdf
  • [40] Fluke Thermal Imager IR Windows, TEquipment. https://www.tequipment.net/fluke/thermal-imagers/ir-windows-for-thermal-imagers/
  • [41] UV and IR Windows. Edmund Optics. https://www.edmundoptics.eu/c/ultraviolet-uv-infrared-ir-windows/670/
  • [42] Flat Windows. Thorlabs Inc. https://www.thorlabs.com/navigation.cfm?guide_id=2367
  • [43] Optical windows. IR, UV windows. High Precision Optical Windows. Demountable cell windows. Alkor Technologies. http://www.alkor.net/Windows.html
  • [44] Harris, R. D. & Towch, A. W. Window evaluation programme for an airborne FLIR system: environmental and optical aspects. Proc. SPIE 1112, 243-257 (1989). https://doi.org/10.1117/12.960784
  • [45] Model 1007H Temperature/Humidity Chamber Specifications. TestEquity. https://www.testequity.com/1007H-specs
  • [46] Temperature Humidity Chamber: Thermal Chamber. LISUN Instru-ments Ltd. https://www.lisungroup.com/products/environmental-test-chamber/high-and-low-temperature-humidity-chamber.html
  • [47] Barela, J., Kastek, M., Firmanty, K. & Trzaskawka, P. Accuracy of Measurements of Basic Parameters of Observation Thermal Cameras. in 13th International Conference on Quantitative Infrared Thermography 87-94 (2016). https://www.ndt.net/article/qirt2016/papers/004.pdf
  • [48] Optical Flats. Edmund Optics. https://www.edmundoptics.com/ knowledge-center/application-notes/optics/optical-flats/
  • [49] Ranger HRC. Teledyne FLIR. https://www.flir.eu/products/ranger-hrc/
  • [50] Handheld equipment. Safran Vectronix. https://safran-vectronix.com/mission/handheld-equipment/
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-005492d7-d6fb-4e89-a9f0-49e83213ddcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.