PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of brains tissue hyperelastic parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the paper is to correlate real brain deflection with its numerical model as the 3D model of a fragment of the brain and suction pipe. The model is analyzed with the Finite Element Method with use of Ansys software. The brain tissue can undergo large strains, which is why it is described by a hyperelastic material. The Mooney-Rivlin material model is used for numerical analyzes. The inverse problem is solved with use of optimization Non-Linear Programming by Quadratic Lagrangian (NLPQL).
Rocznik
Strony
53--60
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
  • Institute of Mechanics and Computational Engineering Silesian University of Technology, Gliwice, Poland
  • Institute of Mechanics and Computational Engineering Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] ANSYS® Academic Research Mechanical, Release 18, Help System (2017), ANSYS, Inc.
  • [2] Schiavone, P., Chassat, F., Boudou, T., Promayon, E., Valdivia, F., & Payan, Y. (2009). In vivo measurement of human brain elasticity using a light aspiration device. Medical Image Analysis, 13(1), 673-678.
  • [3] Xing, M. (2015). Tensile behavior and mechanical anisotropy of branched cerebral vasculature within gray matter. Graduate Program in Mechanical and Aerospace Engineering, 1(1), 33-36.
  • [4] Mihai, L.A., Chin, L., Janmey, P.A., & Goriely, A. (2015). A comparision of hyperelastic constitutive models applicable to brain and fat tissues, J. R. Soc. Interface, 12, 20150486, 1(1), 3-18.
  • [5] Rackl, M. (2015). Curve fitting for Ogden, Yeoh and polynomial models. ScilabTEC Conference 2015, 1(1), 1-11.
  • [6] Budday, S., Nay, R., Rooij, R., Steinmann, P., Wyrobek, T., Ovaert, T.C., & Kuhl, E. (2015). Mechanical properties of gray and white matter brain tissue by indentation. Journal of Mechanical Behavior of Biomedical Materials, 46(1), 319-329.
  • [7] Rashid, B., Destrade, M., & Gilchrist, M.D. (2012). Mechanical characterization of brain tissue in simple shear at dynamic strain rates. Journal of the Mechanical Behavior of Biomedical Materials, 28(1), 73-83.
  • [8] Prevost, T.P., Balakrishnan, A., Suresh, S., & Socrate, S. (2010). Biomechanics of brain tissue. Acta Biomaterialia, 7(1), 84-92.
  • [9] Van Dommelen, J.A.W., van der Sande, T.P.J, Hrapko, M., & Peters, G.W.M. (2009). Mechanical properties of brain tissue by indentation: interregional variation. Journal of the Mechanical Behavior of Biomedical Materials, 3(1), 160-164.
  • [10] Kleiven, S. (2002). Finite element modeling of the human head. Department of Aeronautics Royal Institute of Technology, 1(1), 1-37.
  • [11] Schittkowski, K. (2011). A robust implementation of a sequential quadratic programming algorithm with successive error restoration. Optimization Letters, 5(2), 283-296
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0053fa7d-f1c2-4c48-a8f3-63f5b8d3a289
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.