Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a three-stage space vector pulse width modulation (SVPWM) along with soft switching is proposed for a high-voltage transfer ratio single-stage three phase current-source inverter (HVTR-CSI) to reduce switching losses and improve inverter efficiency. The proposed SVPWM strategy utilizes the conduction state of the energy storage switch as the zero vector and assigning effective vectors action modes. The zero-voltage-switching (ZVS) of the energy storage switch is achieved by resonant parameters and controlling the turn-on time of the active clamp circuit. The circuit topology, operation principle, high-frequency switching process of the studied CSI are thoroughly analyzed, and detailed calculations of the circuit parameters and soft-switching design are performed. Experimental results on a 1 kW 24 VDC/84 VAC 3-phase AC prototype show that the modulation improves the CSI peak efficiency by 1.15% compared to sinusoidal pulse width modulation (SPWM). This study provides an effective design approach for the HVTR-CSI in terms of reducing switching losses.
Czasopismo
Rocznik
Tom
Strony
961--976
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr., wz.
Twórcy
autor
- College of Electrical Engineering and Automation, Fuzhou University China
autor
- College of Electrical Engineering, Qingdao University China
autor
- College of Electrical Engineering, Qingdao University China
autor
autor
- College of Electrical Engineering and Automation, Fuzhou University China
Bibliografia
- [1] Pasko M., Buła D., Dębowski K., Grabowski D., Maciążek M., Selected methods for improving operating conditions of three-phase systems working in the presence of current and voltage deformation – part I, Archives of Electrical Engineering, vol. 67, no. 3, pp. 591–602 (2018), DOI: 10.24425/123665.
- [2] Gupta A., Ayyanar R., Chakraborty S., Novel Electric Vehicle Traction Architecture with 48 V Battery and Multi-Input, High Conversion Ratio Converter for High and Variable DC-Link Voltage, in IEEE Open Journal of Vehicular Technology, vol. 2, pp. 448–470 (2021), DOI: 10.1109/OJVT.2021.3132281.
- [3] Kushwaha R., Singh B., Power Factor Improvement in Modified Bridgeless Landsman Converter Fed EV Battery Charger, IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3325–3336 (2019), DOI: 10.1109/TVT.2019.2897118.
- [4] Chuanqiang Lian, Fei Xiao, Jilong Liu, Shan Gao, Parameter and VSI Nonlinearity Hybrid Estimation for PMSM Drives Based on Recursive Least Square, IEEE Transactions on Transportation Electrification, vol. 9, no. 2, pp. 2195–2206 (2023), DOI: 10.1109/TTE.2022.3206606.
- [5] Hongbo Qiu, Yong Zhang, Cunxiang Yang, Ran Yi, Performance analysis and comparison of PMSM with concentrated winding and distributed winding, Archives of Electrical Engineering, vol. 69, no. 2, pp. 303–317 (2020), DOI: 10.24425/aee.2020.133027.
- [6] Fang Zheng Peng, Z-source inverter, IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 504–510 (2003), DOI: 10.1109/TIA.2003.808920.
- [7] Minh-Khai Nguyen, Young-Gook Jung, Young-Cheol Lim, Single-Phase AC–AC Converter Based on Quasi-Z-Source Topology, vol. 25, no. 8, pp. 2200–2210 (2010), DOI: 10.1109/TPEL.2010.2042618.
- [8] Anish Ahmad, Vinod Kumar Bussa, Rajeev K. Singh, Ranjit Mahanty, Switched-Boost-Modified Z-Source Inverter Topologies with Improved Voltage Gain Capability, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 2227–2244 (2018), DOI: 10.1109/JESTPE.2018.2823379.
- [9] Yuliang Ji, Lina Geng, Fei Li, Hongchen Liu, Active-Switched Coupled-Inductor Impedance Network Boost Inverters, IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 319–330 (2021), DOI: 10.1109/TVT.2020.3048656.
- [10] Vadthya Jagan, Janardhana Kotturu, Sharmili Das, Enhanced-Boost Quasi-Z-Source Inverters with Two-Switched Impedance Networks, IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 6885–6897 (2017), DOI: 10.1109/TIE.2017.2688964.
- [11] Anish Ahmad, Singh R.K., Abdul R. Beig, Switched-Capacitor Based Modified Extended High Gain Switched Boost Z-Source Inverters, IEEE Access, vol. 7, pp. 179918–179928 (2019), DOI: 10.1109/ACCESS.2019.2959136.
- [12] Weiwei Chen, Yougen Chen, Jiayun Hou, Renyong Wei, Zhiyong Li, Junbo Yin, Cascaded Z-source Inverter Control Based on Bidirectional Positive and Negative Sequence Decoupling, 018 8th International Conference on Power and Energy Systems (ICPES), Colombo, Sri Lanka, pp. 124–129 (2018), DOI: 10.1109/ICPESYS.2018.8626893.
- [13] Soumya Shubhra Nag, Santanu Mishra, A Coupled Inductor Based High Boost Inverter with Sub-unity Turns-Ratio Range, IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7534–7543 (2016), DOI: 10.1109/TPEL.2016.2543499.
- [14] Pengcheng Liu, Zheng Wang, Qiuxiao Song, Yang Xu, Ming Cheng, Optimized SVM and Remedial Control Strategy for Cascaded Current-Source-Converters-Based Dual Three-Phase PMSM Drives System, IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 6153–6164 (2020), DOI: 10.1109/TPEL.2019.2952672.
- [15] The-Tien Nguyen, Honnyong Cha, Duc-Tuan Do, Fazal Akbar, Modified SVPWM for Three-Phase Six-Switch Switching-Cell Current Source Inverter, IEEE Transactions on Power Electronics, vol. 37, no. 12, pp. 14820–14830 (2022), DOI: 10.1109/TPEL.2022.3199217.
- [16] Daolian Chen, Jiahui Jiang, Yanhui Qiu, Jie Zhang, Fusong Huang, Single-Stage Three-Phase Current-Source Photovoltaic Grid-Connected Inverter High Voltage Transmission Ratio, IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 7591–7601 (2017), DOI: 10.1109/TPEL.2016.2622722.
- [17] Cuadros C., Borojevic D., Gataric S., Vlatkovic V., Space vector modulated, zero-voltage transition three-phase to DC bidirectional converter, Proceedings of 1994 Power Electronics Specialist Conference – PESC’94, Taipei, Taiwan, vol. 1 pp. 16–23 (1994), DOI: 10.1109/PESC.1994.349755.
- [18] Lopes L.A.C., Naguib M.F., Space Vector Modulation for Low Switching Frequency Current Source Converters with Reduced Low-Order Noncharacteristic Harmonics, in IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 903−910 (2009), DOI: 10.1109/TPEL.2008.2011270.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-005236da-9e03-4205-a288-f82ac6bbe003