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Abstract: Deformations of the computational mesh, arising
from optimization routines, usually lead to decrease of mesh quality
or even destruction of the mesh. We propose a theoretical framework
using pre-shapes to generalize the classical shape optimization and
calculus. We define pre-shape derivatives and derive corresponding
structure and calculus theorems. In particular, tangential directions
are featured in pre-shape derivatives, in contrast to classical shape
derivatives, featuring only normal directions. Techniques from clas-
sical shape optimization and calculus are shown to carry over to this
framework. An optimization problem class for mesh quality is intro-
duced, which is solvable with the use of pre-shape derivatives. This
class allows for simultaneous optimization of the classical shape ob-
jectives and mesh quality without deteriorating the classical shape
optimization solution. The new techniques are implemented and
numerically tested for 2D and 3D.

Keywords: shape optimization, mesh quality, mesh deforma-
tion method, shape calculus

1. Introduction

1.1. The subject of the paper

Solutions of PDE constrained optimization problems, in particular – problems
where the desired control variable is a geometric shape, are only meaningful, if
the state variables of the constraint can be calculated with sufficient reliability.
A key component of reliable solutions is given by the quality of the computa-
tional mesh. It is well-known that poor quality of elements affect the stability,
convergence, and accuracy of finite element and other solvers.
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We propose a unified framework, using the so-called pre-shapes. In this
setting, both shape optimization and mesh quality optimization problems can
be formulated at the same time. We give a class of problems called pre-shape
parameterization tracking problems, which can act as regularizations for shape
optimization problems. These problems can be solved for volume and surface
meshes with arbitrary dimension, and yield numerical algorithms similar to so
called mesh deformation methods, which reallocate nodes of numerical meshes
according to targeted element volumes in order to improve mesh quality. At the
same time, the proposed framework is suitable to derive a calculus mimicking
classical shape calculus. This enables formulation of efficient routines solving
shape optimization problems, which, at the same time, optimize quality of the
surface mesh, representing the shape, without noticeable additional computa-
tional cost or interference with the original shape optimization problem. With
this, the desired surface and the surrounding volume mesh quality are ensured
during shape optimization.

In this paper we will establish the theoretical foundations of pre-shape op-
timization and calculus, and show its connection to classical shape calculus.
We implement these methods in the form of a pre-shape gradient descent to
achieve a targeted quality of volume and surface meshes without a shape opti-
mization target. In Luft and Schulz (2021), we build on the achievements of this
paper, and introduce theoretical and numerical results to solve shape optimiza-
tion problems while simultaneously improving volume and shape mesh quality
according to targeted node distributions. The techniques, elaborated in Luft
and Schulz (2021) leave optimal shapes invariant and offer minimal additional
numerical costs. They also permit the use of different metrics to represent gra-
dients. We compare pre-shape mesh regularizations for various metrics in Luft
and Schulz (2021) for a hard to solve shape optimization problem.

1.2. Literature review

We give a brief overview of techniques related to the ones treated in this article.
Our methods are not related to mesh untangling and -relaxation, edge swapping
or remeshing strategies, such as those in Freitag (1997), Frey and Borouchaki
(1999), Algorri and Schmitt (1996), Johnson, Sullivan and Kwasnick (1991).
Of course, as there is a vast amount of literature concerning mesh generation
and improvement strategies thereof, we can only give a selective overview. Two
very prominent classes of techniques for mesh quality improvement are the so
called mesh deformation method and methods based on Laplacian smoothing.
Mesh deformation methods go back to a theoretical result, initially proposed
by Moser (1965), extended by Banyaga (1974) and by Dacorogna and Moser
(1990). This gave rise to mesh deformation methods pioneered by Liao and
Anderson (1992), which redistribute mesh vertices so that uniform cell volumes
are achieved. Mesh deformation methods are powerful, because they prevent
mesh tangling while offering precise control over the element volumes. The
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original method was further developed in various directions by Liao and as-
sociates (see Bochev, Liao and dela Pena, 1996; Liu, Ji and Liao, 1998; Cai,
Jiang and Liao, 2004; Zhou, Chen and Liao, 2017). These advances allow to
target non-uniform cell volume distributions, make deformation methods ap-
plicable to time-dependent problems, and show its use in higher order mesh
generation methods. Also, the combination of multigrid- and mesh deformation
methods was analyzed and implemented by Turek and associates (see Wan and
Turek, 2006; Grajewski, Köster and Turek, 2009, 2010). A different family of
mesh quality improvement techniques are those based on Laplacian smooth-
ing (Field, 1988; Freitag, 1997; Shontz and Vavasis, 2003; Zhang, Bajaj and
Xu, 2009). They do not necessarily track for cell volume distributions, but,
instead, improve quality by averaging or smoothing vertex coordinates more
or less specifically. Several strategies for increasing mesh quality, not based
on mesh deformation methods mentioned or Laplacian smoothing, exist. In
the context of shape optimization and -morphing, these include correcting for
errors, frequently arising in discretizations of Hadamard’s theorem (Etling et
al., 2018), adding non-linear advection terms in shape gradient representa-
tions (Onyshkevych and Siebenborn, 2020), approximating shape morphing by
volume-preserving mean-curvature flows (Laurain and Walker, 2020), and use
of techniques related to centroidal Voronoi reparameterization in combination
with eikonal equation based non-linear advection terms for representation of
shape gradients (Schmidt, 2014).

2. General theory for pre-shape calculus

2.1. Pre-shape spaces

In order to provide theoretical grounds for the numerical procedures we are
about to elaborate in the subsequent paper, we need to specify a framework
for the objects, ’shapes’, with respect to which we seek to optimize. Several
possible theories and techniques exist in order to precisely formulate the notion
of shapes. For example, shapes can be viewed as sets together with correspond-
ing characteristic functions in an ambient space, leading to an approach which
emphasizes geometric measure theory as in Delfour and Zolésio (2001). We
choose a different setting, namely a shape space approach using infinite dimen-
sional differential geometry, since it naturally permits to view the shape and
its parameterization at the same time. This is the key to extending numerical
routines in a way that optimizes parameterizations, i.e. meshes, in a desired
way without interfering with the shape optimization taking place. For an ex-
cellent overview of shape spaces we refer to Bauer, Bruveris and Michor (2014),
from which we borrow several definitions for the following introduction to shape
spaces considered in this article.

For the rest of this article, let M be an n-dimensional, orientable, path-
connected and compact Ck,α- or C∞-manifold. Further, we will use Rn+1 as the
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ambient space for building our theory. In particular only shapes of codimension
1 are considered.

Denote by Diff(M) the regular Lie-group of C∞-diffeomorphisms of M onto
itself. Then, the space Be of unparameterized C∞-shapes in R

n+1 is defined by
(see Michor and Mumford, 2005)

Be(M,Rn+1) := Emb(M,Rn+1)/Diff(M), (1)

where Emb(M,Rn+1) is the space of all C∞-embeddings of M into R
n+1 and

Diff(M) is acting on the right. For avoidance of confusion, we remember that in
this context a C∞-embedding is an injective, smooth map ϕ :M → R

n+1, which
has injective first derivative everywhere, i.e. ϕ is an injective immersion. The
resulting space Be(M,Rn+1), is also called non-linear Grassmannian (see Kriegl
and Michor, 1997) or differentiable Chow-variety. It forms a smooth Hausdorff
manifold, whose elements can be regarded as unparameterized hypersurfaces of
R

n+1 (see Michor and Mumford, 2007, Corollary 3.3). In the following we will
abbreviate Be(M,Rn+1) by Bn

e , still having the implicit relation to the manifold
M and its dimension in mind. This space can be equipped with various metrics,
which means shape optimization can be regarded as optimization on an infinite
dimensional Riemannian manifold (see Schulz, 2014). Notice that Bn

e is not a
manifold if C∞-regularity is replaced by Hölder- or Sobolev-regularity. In this
more general setting, resulting spaces have a diffeological structure (see Welker,
2017). To acquire intuition, a graphical visualization of Bn

e is given in Fig. 1.

Figure 1: Illustration of a path in the shape space Bn
e for M = S1

For our purposes it is not enough to view shape optimization as optimization
in Bn

e . Instead, we will exploit additional structures on the space Emb(M,Rn+1)
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induced by the action of Diff(M) and base our framework as optimization in
Emb(M,Rn+1). Elements ϕ ∈ Emb(M,Rn+1) can be interpreted as parameter-
ized shapes in the ambient space R

n+1, whereas elements of Diff(M), acting on
the right, can be seen as reparameterizations. The authors of Bauer, Bruveris
and Michor (2014, Chapter 1.1) call Emb(M,Rn+1) pre-shape space, an expres-
sion we will borrow for the techniques we will build in this paper. Notice that
the term pre-shape space is used differently, depending on the literature, e.g. in
Kendall et al. (2009), where the authors use this term for the space of labeled
landmarks, which are equivalent under translation and scaling.

The additional structure of parameterized shapes ϕ ∈ Emb(M,Rn+1), com-
pared to unparameterized shapes Γ ∈ Bn

e , enables to not just view the shape
itself, but also to distinguish various types of discretizations in the ambient space
and the corresponding numerical meshes. Even further, this concept enables to
control the parameterization of the hold-all domain itself, allowing for control
of the way volume meshes are discretized. The structure for this is given by the
fact (see Kriegl and Michor, 1997, Theorem 44.1; Binz and Fischer, 1981) that
the quotient map

π : Emb(M,Rn+1) → Be(M,Rn+1) (2)

makes Emb(M,Rn+1) the total space of the smooth principal fibration with
Diff(M) acting as the structure group or standard fiber, Bn

e being the base space,
which goes back to Binz and Fischer (1981). As a reminder, a fiber bundle is a
manifold, which locally looks like a product space B × F , where B corresponds
to the base space, and F corresponds to the standard fiber. In our context, this
means that the pre-shape space Emb(M,Rn+1) is the collection of parameter-
ized shapes, which locally looks like ’Shape’×’Parameterization’. However, this
relationship holds only locally, and the global structure of the pre-shape space
Emb(M,Rn+1) is much more complex. The situation is graphically sketched in
Fig. 2.

An application of the bundle projection π to a parameterized shape ϕ ∈
Emb(M,Rn+1) results in its unparameterized shape π(ϕ) ∈ Bn

e in the base
space. Hence, we can view the fiber π(ϕ) as the collection of all parame-
terizations of the shape ϕ(M). It is important to avoid confusion of ϕ(M)
and π(ϕ), which are both called shapes. The first interprets shapes as subsets
ϕ(M) ⊂ R

n+1, the latter as equivalence-classes, i.e.

π(ϕ) := {ψ ∈ Emb(M,Rn+1) : ∃ρ ∈ Diff(M) s.t. ϕ = ψ ◦ ρ} ∈ Bn
e . (3)

The equivalence class interpretation is the collection of parameterizations cor-
responding to a certain shape in R

n+1.

In order to formulate an analogue of shape calculus in Emb(M,Rn+1), we
need to characterize the tangential bundles T Emb(M,Rn+1) and TBn

e , as well
as their relations. For this, we make use of results by Kriegl and Michor (1997).

Since we assume M to be compact, the respective tangent bundle of the
pre-shape space is isomorphically given by
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Figure 2: Illustration of the pre-shape space Emb(M,Rn+1) for M = S1. To
illustrate the parameterization interpretation of fibers π(ϕ), the same four points
are mapped from M to ϕi(M)

Tϕ Emb(M,Rn+1) ∼= C∞(ϕ(M),Rn+1) ∀ϕ ∈ Emb(M,Rn+1). (4)

The fiber-bundle structure leads to a decomposition of the tangent bundle of
the total space T Emb(M,Rn+1) into the so called vertical bundle, defined as
kerTπ ⊂ T Emb(M,Rn+1), and the horizontal bundle. Since we only deal with
compact and orientable n-dimensional manifolds M , the existence of outer nor-
mal vector-fields n on ϕ(M) ⊂ R

n+1 is guaranteed. In the following, let 〈., .〉2
denote the L2-scalar product. Thus, we obtain

Tϕ Emb(M,Rn+1) ∼= Tϕ(M) ⊕Nϕ(M) ∀ϕ ∈ Emb(M,Rn+1), (5)

where

Tϕ(M) := {h ∈ C∞(ϕ(M),Rn+1) : 〈h, n〉2 = 0 on ϕ(M)} (6)

is the space of tangential vector fields on ϕ(M) in the ambient space Rn+1, with

Nϕ(M) := {h ∈ C∞(ϕ(M),Rn+1) : h = α · n, α ∈ C∞(ϕ(M),R)} (7)

being the space of normal vector fields on ϕ(M). The tangential fields are parts
of the vertical bundle, whereas the normal fields constitute the horizontal bundle
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part. This also gives the well-known characterization of the tangential bundle
of the classical shape space Bn

e via normal vector fields, i.e.

Tπ(ϕ)B
n
e
∼= Nϕ(M)

∼= C∞(ϕ(M),R) ∀π(ϕ) ∈ Bn
e . (8)

As previously, we also visualize the situation for tangential bundles in respective
figures, namely Figs. 3 and 4.

Figure 3: Illustration of a shape tangential vector from TBn
e for M = S1

2.2. Pre-shape calculus

Next, we introduce a suitable notion of objective functionals. We are inspired
by Delfour and Zolésio (2001, Chapter 4.3.1), where shape functionals J are
functions on a set of admissible shapes A, which are considered to be a subset
of the power set A ⊆ P(Rn+1). This is a set-theoretic approach, because the
power set P(Rn+1) is the set of all subsets of Rn+1. Since we can canonically
associate every equivalence class π(ϕ) ∈ Bn

e with its set ϕ(M) ⊂ R
n+1, we get

the following definition for the special set of admissible shapes Bn
e .

Definition 1 (Shape and Pre-Shape Functionals) LetM be an n-dimen-
sional, orientable, path-connected and compact C∞-manifold. Consider the
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Figure 4: Illustration of vectors from T Emb(M,Rn+1) with pure tangen-
tial/vertical components for M = S1. Note that four points are added to
illustrate the parameterization interpretation of fibers π(ϕ)

shape space Bn
e as defined in eq. (1) and the space of embeddings Emb(M,Rn+1).

Then, a function

J : Bn
e → R (9)

is called shape functional, and a function

J : Emb(M,Rn+1) → R (10)

is called pre-shape functional.

The nomenclature of pre-shape functional for functions as in eq. (10) is motivated
by regarding Emb(M,Rn+1) as a pre-shape space, like in Bauer, Bruveris and
Michor (2014, Chapter 1.1). Since optimization is classically taking place in
shape spaces as opposed to pre-shape spaces, we will highlight some of their
correspondences and relations. The following definition is motivated by the
construction of the shape space Bn

e in eq. (1).
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Definition 2 (Shape Functionality) Let J be a pre-shape functional and
let ϕ ∈ Emb(M,Rn+1). We say that J has shape functionality in ϕ if it is
consistent with the fiber projection, i.e.

J(ϕ ◦ ρ) = J(ϕ) ∀ρ ∈ Diff(M). (11)

If J has shape functionality for all ϕ ∈ Emb(M,Rn+1), we say that J has shape
functionality.

In order to give optimality criteria for the pre-shape optimization problems
and to formulate the derivative based optimization algorithms, we need to intro-
duce a shape derivative analogue for Emb(M,Rn+1). Also, it is desirable that
the analogue be compatible with the classical Eulerian derivative, as, for exam-
ple, found in Delfour and Zolesio (2001, Chapter 4.3.2) or in Schulz, Siebenborn
and Welker (2016, Chapter 2.1). This motivates us to proceed in the fashion of
classical shape optimization by defining a pre-shape derivatives based on fam-
ilies of deformations perturbing the image space. We show their relation to
classical shape derivatives, and then give a structure theorem, similar to the
Hadamard-Zolésio structure theorem (see Delfour and Zolésio, 2001, Chapter
9, Theorem. 3.6). Shape calculus or sensitivity analysis of classical shape op-
timization (see Haslinger and Mäkinen, 2003, Chapter 3; Berggren, 2010) will
carry over to pre-shape spaces naturally.

Remark 1 (Validity of pre-shape theory for different regularities
of shapes) We want to remind the reader that the choice of C∞-regularity
for pre-shapes in Emb(M,Rn+1) is not necessary to introduce the concepts of
this section, but merely serves as an exemplary situation. It is clear that the
same definitions apply for embeddings ϕ of Sobolev- or Hölder-regularity. In
these cases test functions and directions V need of course to have corresponding
regularity.

Definition 3 (Perturbation of Identity and Pre-shape Derivatives)
Let J be a pre-shape functional (not necessarily having shape functionality),
ϕ ∈ Emb(M,Rn+1) and V ∈ C∞(Rn+1,Rn+1). Then, the family of functions

ϕt := ϕ+ t · V ◦ ϕ (12)

is called perturbation of identity of ϕ in direction V for t ∈ [0, τ) and some
τ > 0. The limit

DJ(ϕ)[V ] := lim
t↓0

J(ϕt)− J(ϕ)

t
(13)

is called pre-shape derivative for J at ϕ ∈ Emb(M,Rn+1) in direction V , if it
exists and is linear and bounded in V .

The perturbation of identity for shapes at Γ0 ⊂ R
n+1 in direction V ∈ C∞(Rn+1,

R
n+1) is defined by

Γt := {x0 + t · V (x0) : x0 ∈ Γ0}. (14)
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Notice that this is a set, in contrast to the perturbation of identity for pre-
shapes, eq. (12), which is a function in Emb(M,Rn+1). Shape derivatives of a
shape functional J are given by

DJ (Γ0)[V ] := lim
t↓0

J (Γt)− J (Γ0)

t
. (15)

The difference quotients, defining pre-shape and shape derivatives use com-
pletely different objects, therefore their difference is significant. Their relation-
ship is explored in Proposition 1 and Theorem 1 further on.

The proposition below shows a result relating shape differentiability of clas-
sical shape optimization and pre-shape derivatives.

Proposition 1 (Shape Differentiability implies Pre-Shape Differen-
tiability) Consider a shape functional J : Bn

e → R. Then it has a canonical
extension to a pre-shape functional

J : Emb(M,Rn+1) → R, ϕ 7→ J (π(ϕ)), (16)

where π is the bundle projection as in eq. (2). Further, there is a one-to-one cor-
respondence of shape functionals J and pre-shape functionals J with the property
of shape functionality. Additionally, if J is shape differentiable in the classical
sense, then its extension J is pre-shape differentiable.

Proof One-to-one correspondence of pre-shape functionals with the property
of shape functionality as in Definition 2 and classical shape functionals as in
eq. (9) is clear. On the one hand, every canonical extension, eq. (16), of a
classical shape functional J has shape functionality. On the other hand, every
pre-shape functional J̃ having shape functionality gives rise to a shape functional
J fulfilling eq. (16), as every fiber π(ϕ) is the orbit of a ϕ by Diff(M) acting
from the right.

The pre-shape differentiability assertion in Propositon 1 holds, since J ◦ π
extends the values of J constantly onto the fibers of Emb(M,Rn+1). For a
fixed ϕ ∈ Emb(M,Rn+1), a case analysis for directions V ∈ C∞(Rn+1,Rn+1)
being either tangential or normal at ϕ(M) can be made. In case of horizontal,
i.e. normal, directions V we recover the classical shape derivative DJ . On the
other hand, the pre-shape derivative in vertical directions can be represented
as a differential via curves on ϕ(M), which, combined with J ◦ π extending
J constantly on fibers, gives a vanishing pre-shape derivative. Linearity and
boundedness of D(J ◦ π)(ϕ)[V ] in V are easy to see due to its vanishing for
tangential components of V , together with linearity and boundedness of the
classical shape derivative DJ by assumption. ✷

We can now situate the classical shape optimization problems in the context
of optimization in pre-shape spaces Emb(M,Rn+1) for suitable manifolds M .
But first, we observe that a unique solution ϕ(M) of a shape optimization prob-
lem has multiple parameterizations in general. For shape optimization prob-
lems posed in the pre-shape space Emb(M,Rn+1), this leads to non-uniqueness
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of solutions, which might at first appear like a disadvantage. However, due
to non-uniqueness up to elements in the solution fiber π(ϕ), it is possible to
demand additional properties for the pre-shape solution. This gives several op-
portunities for enhancing numerical shape optimization routines, while at the
same time narrowing down the amount of non-uniqueness of pre-shape solutions
to a reasonable level. We will exploit this in upcoming works, such as Luft and
Schulz (2021), where we increase mesh quality in shape optimization problems.
Proposition 1 also offers a possibility to transfer results, concerning shape dif-
ferentiability of classical shape functionals, to the pre-shape setting without the
need for new proofs. In particular, existence of stationary points in Bn

e is carried
over to Emb(M,Rn+1) as existence of stationary fibers. Hence, Proposition 1
shows that pre-shape optimization is in some sense a canonical generalization
to classical shape optimization.

The definition of material- and shape derivatives found in classical shape
optimization and structural sensitivity analysis literature (see Beggren, 2010,
Definitions 1 and 2; Haslinger and Mäkinen, 2003, Chapter 3.3.1), possesses
useful properties for practical applications. In particular, through the use of
material derivatives, it is often straightforward to derive expressions for shape
derivatives of integral quantities. We proceed by extending the notion of mate-
rial derivatives from the classical context to the pre-shape calculus framework
in order to harness these practical benefits.

Definition 4 (Pre-Shape Material Derivative) Consider a family of fun-
ctions {fϕ : Rn+1 → R}ϕ∈Emb(M,Rn+1). For a direction V ∈ C∞(Rn+1,Rn+1),
we define the pre-shape material derivative in x0 ∈ R

n+1 by

Dmf(ϕ)[V ](x0) :=
d

dt |t=0
fϕt

(xt), (17)

if the limit exists. Here, ϕt is the perturbation of identity for pre-shapes (cf. eg.
(12)) and xt = x0 + t · V (x0) is a perturbed point.

A careful reader might notice the similarity of classical shape and pre-shape
material derivatives. The main difference is a possible dependence of functions
f on parameterizations of shapes/domains they are defined for. Still, both
notions coincide if the pre-shape functional has shape functionality, as we will
see in Corollary 1 coming from the main Structure Theorem 1.

The definition of the material derivative can be generalized to functions
and domains of weaker regularity, such as Sobolev functions and open subset
Ω ⊂ R

n+1 with Lipschitz boundaries. A necessity for this comes from the
fact that state solutions stemming from PDE constrained shape optimization
problems need a well-defined material derivative for sensitivity analysis to be
convenient. This is done in the same way as with the classical shape material
derivative (see Haslinger and Mäkinen, 2009, p. 111).

It is further important to notice that the family fϕ can be seen as a function
f : Emb(M,Rn+1) × R

n+1 → R. In the first component, the perturbation of
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identity for pre-shapes comes into play, which differs from the classical shape-
material derivative. This leads to the following decomposition of the material
derivative, which is similar to classical shape calculus, e.g. given by Haslinger
and Mäkinen (2003, p. 111, (3.39),

Dmf(ϕ)[V ] = Df(ϕ)[V ] +∇fTϕ V. (18)

In the following we give a characterization of the pre-shape derivative in the
style of the Hadamard-Zolésio structure theorem as found in Delfour and Zolésio
(2001, Chapter 9, Theorem 3.6). For explanations, concerning the use of distri-
butions, as we do in the following, the reader can consult Rudin (1991, Remark
6.2, Defitions. 6.22, 6.34, Theorem 7.10, Example 7.12).

Theorem 1 (Structure Theorem for Pre-Shape Derivatives)
Let J : Emb(M,Rn+1) → R be a pre-shape differentiable pre-shape functional
(not necessarily having shape functionality) and let ϕ ∈ Emb(M,Rn+1). Denote
by nϕ(M) the outer normal vector field of a shape ϕ(M) for a ϕ ∈ Emb(M,Rn+1).

Then, the following holds:

(i) The support of DJ(ϕ) is given by

suppDJ(ϕ) ⊆ {V ∈ C∞(Rn+1,Rn+1) : ϕ(M) ∩ suppV 6= ∅}. (19)

(ii) There exist continuous linear functionals gT : C∞(Rn+1,Rn+1) → R and
gN : C∞(Rn+1,Rn+1) → R, depending on ϕ, which are tempered distribu-
tions when restricted to C∞

c (Rn+1,Rn+1) (see Rudin, 1991, Chapter 6.1,
for definitions), with support on ϕ(M) such that

DJ(ϕ)[V ] =
〈

gN , V
〉

+
〈

gT , V
〉

∀V ∈ C∞(Rn+1,Rn+1) (20)

with

supp gN ⊆ suppDJ(ϕ)∩{V ∈ C∞
c (Rn+1,Rn+1) : Tr|ϕ(M)[V ] ∈ Nϕ(M)}

(21)

and

supp gT ⊆ suppDJ(ϕ)∩{V ∈ C∞
c (Rn+1,Rn+1) : Tr|ϕ(M)[V ] ∈ Tϕ(M)},

(22)

where Tr|ϕ(M) : C
∞(Rn+1,Rn+1) → C∞(ϕ(M),Rn+1) is the trace opera-

tor and n the outer unit normal vector field on ϕ(M).
(iii) If J has shape functionality, then for all ϕ ∈ Emb(M,Rn+1), we have

gT = 0 and

DJ(ϕ)[V ] = DJ (π(ϕ))[V ] ∀V ∈ C∞(Rn+1,Rn+1), (23)

where J : Bn
e → R is the natural shape functional corresponding to J by

J ◦π = J. In particular, gN corresponds to the distribution of the classical
Hadamard-Zolésio structure theorem.



Pre-shape calculus: foundations and application to mesh quality optimization 275

Proof Since we are in a different situation than that of the classical Hadamard-
Zolésio structure theorem, see Delfour and Zolésio (2001, Chapter 9, Theorem
3.6) for (i) and (ii), we give proofs for these ourselves.

For (i), let V ∈ C∞(Rn+1,Rn+1) be such that ϕ(M)∩suppV = ∅. Consider
the perturbation of identity ϕt for V of ϕ as in eq. (12). By ϕ(M)∩ suppV = ∅

we have V ◦ ϕ = 0, resulting in ϕt = ϕ being constant in t. This yields
DJ(ϕ)[V ] = 0 by eq. (13), which immediately gives us (i).

For (ii), the proof, to some extent, follows analogous reasoning as in Delfour
and Zolésio (2001, Chapter 9.3.4, Corollary 1), where Banach spaces Ck(Rn+1,
R

n+1) are considered. It is clear that DJ(ϕ) : C∞(Rn+1,Rn+1) → R defines a
linear functional with compact support as in eq. (19) (see Rudin, 1991, Definition
6.22, for definition of supports of distributions). In addition, we can use the fact
that it is contained in the Schwartz space C∞

c (Rn+1,Rn+1), due to compactness
of ϕ(M). This gives us the tempered distribution property. Then, gT and gN

are defined by restriction to the vertical and horizontal parts of V , recurring on
decomposition of the tangent bundle in horizontal and vertical components of
5, giving us (ii).

For (iii), let J have shape functionality and let V ∈ C∞(Rn+1,Rn+1). On
ϕ(M), we can decompose V into normal and tangential components. For the
tangential part, we can follow analogous arguments as in the proof of Proposition
1, giving us a curve ϕt in the fiber π(ϕ), generating the pre-shape derivative as
a differential at a given ϕ. As ϕt is running on the fiber of ϕ and J has shape
functionality (see Definition 2) in ϕ by assumption, J(ϕt) is constant for all
t, rendering gT = 0 by eq. (20). Further, by eq. (20), the pre-shape derivative
DJ(ϕ)[V ] reduces to gN acting on normal directions. With Proposition 1, shape
functionality of J leads to a well defined shape functional J : Bn

e → R with
J ◦π = J. As the tangential part of V has no impact on DJ(ϕ)[V ], we can find
a horizontal curve ϕt generating DJ(ϕ)[V ]. The representative ϕt either creates
a trivial curve π(ϕt) in B

n
e , which leads to eq. (23) being 0 on both sides, or a

non-trivial curve π(ϕt) in B
n
e . If π(ϕt) is non trivial, we have

DJ (π(ϕ))[V ] =
d

dt |t=0
J (π(ϕt)) =

d

dt |t=0
J(ϕt) = DJ(ϕ)[V ] (24)

for the shape derivative DJ (π(ϕ)) and pre-shape derivative DJ(ϕ), resulting in
eq. (23). By association of ϕ(M) with π(ϕ) ∈ Bn

e this also shows that gN corre-
sponds to the distribution in the classical Hadamard-Zolésio structure Theorem
(see Delfour and Zolésio, 2001, Chapter 9.3.4, Theorem 3.6 and Corollary 1),
giving us (iii). ✷

The structure Theorem 1 gives an intuitive way to understand the pre-shape
derivative, eq. (13), and the relation between shape functionals and pre-shape
functionals. Part (i) of Theorem 1 has the same meaning as in the classical
Hadamard-Zolésio structure theorem for shape derivatives, namely that defor-
mations of the hold-all domain only influence the pre-shape functional if they
deform the (pre-) shape ϕ(M).



276 D. Luft and V. Schulz

The difference with respect to classical shape derivatives is illustrated in
equation (20), where the effect of deformations on the objective is split into
normal and tangential components. The normal part gN can be understood as
the shape optimization part of DJ, i.e. J depending on the change of interface
ϕ(M). This is also reflected by the structure of its support, given in eq. (21),
which states that only normal directions V ∈ Nϕ(M), deforming ϕ(M), have
an effect on gN . On the other hand, gT is interpretable as the part of DJ

being sensitive to reparameterization of the shape ϕ(M), which is shown by the
structure of its support in eq. (22), where only tangential vector field V ∈ Tϕ(M)

plays a role. In classical shape optimization, tangential vectors are always in
the nullspace of the shape derivative. But in the more general pre-shape case
both components discussed can have non-trivial effects.

This is also reflected by Theorem 1 (iii), stating that pre-shape function-
als having shape functionality have vanishing tangential part of the pre-shape
derivative DJ, meaning that they are only supported by normal components of
the deformation field V ∈ C∞(Rn+1,Rn+1) just as in the classical shape op-
timization theory. On the other hand, if ’shape derivatives’ are not found to
vanish in tangential directions, the ’shape functional’ at hand is actually a true
pre-shape functional. This is the case for mesh optimization techniques we will
introduce.

Also, for shapes ϕ(M) ⊂ R
n+1 being bounded and topologically closed Ck+1-

submanifolds of Rn+1 with non-empty interior, the classical Hadamard-Zolésio
structure theorem was generalized in Sturm (2016, Theorem 5.5). In the special
case of the objective J having shape functionality, i.e. vanishing tangential
component of the pre-shape derivative as by Theorem 1, the results of Sturm
(2016, Corollary 4.2) coincide with results in Theorem 1.

Before we come to some exemplary pre-shape derivatives and their decom-
positions, we formulate a simple corollary, which connects the classical material
derivatives with their pre-shape versions.

Corollary 1 (Decomposition for Pre-Shape Material Derivatives)
Let f : Emb(M,Rn+1)×R

n+1→ R be pre-shape differentiable, ϕ∈Emb(M,Rn+1)
and V ∈ C∞(Rn+1,Rn+1).
Then, the material derivative decomposes into

Dmf(ϕ)[V ] =
〈

gN , V
〉

+
〈

gT , V
〉

+∇fTϕ V. (25)

In particular, if f has shape functionality, then for the corresponding shape
dependent function f̃ : Be × R

n+1 → R the relationship

Dmf(ϕ)[V ] = Dmf̃(π(ϕ))[V ] (26)

holds for all ϕ ∈ Emb(M,Rn+1), which means that the pre-shape and classical
material derivative coincide.

Proof To get the decomposition of eq. (25), we simply use the formula of
eq. (18) and apply decomposition, eq. (20), of the structure theorem to the
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occurring pre-shape derivatives for fixed x0 ∈ R
n+1. If f has shape function-

ality, we can apply part (iii) of Theorem 1 to decomposition of eq. (25) and
see that the pre-shape material derivative equals the classical material deriva-
tive Dmf̃(π(ϕ))[V ], since gN corresponds to the distribution from the classical
Hadamard theorem. ✷

With the last part of this corollary, we can apply the pre-shape material
derivatives to shape differentiable functions, yielding the same results as the
classical material derivative by association with pre-shape extensions via Propo-
sition 1.

We have now seen that Structure Theorem 1, Proposition 1 and Corollary
1 guarantee validity of the classical shape calculus formulae and results in the
context of pre-shapes. Pre-shape calculus can be applied to objects from shape
optimization if they are associated with their corresponding pre-shape counter-
parts, leading to the same derivatives and thus optimization methods. Even
further, it is possible to apply pre-shape calculus to mixed shape and pre-shape
problems, where the shape part is treated just as if shape calculus were applied,
with the key difference being that a pre-shape component would otherwise be
non-accessible. In the following, we show some simple examples, which are not
accessible by classical shape calculus.

Example 1 For a target pre-shape ϕ̃ ∈ Emb(S1,R2), let us define a pre-shape
optimization problem by

min
ϕ∈Emb(S1,R2)

1

2

∫

S1

|ϕ− ϕ̃|2 ds =: J(ϕ). (27)

The pre-shape functional J measures the difference of a target ϕ̃ to another
parameterized shape ϕ.

Its pre-shape derivative can be calculated for directions V ∈ C∞(R2,R2) by
using elementary techniques

DJ(ϕ)[V ] =
d

dt |t=0

1

2

∫

S1

|ϕt − ϕ̃|2 ds

=
1

2

∫

S1

d

dt |t=0
〈ϕ+ t · V ◦ ϕ− ϕ̃, ϕ+ t · V ◦ ϕ− ϕ̃〉 ds

=

∫

S1

〈ϕ− ϕ̃, V ◦ ϕ〉 ds.

(28)

We can choose S1 with canonical parameterization as a starting pre-shape or
point of reference by considering

ϕid : S1 ⊂ R
2 → R

2,

(

x1
x2

)

7→

(

x1
x2

)

. (29)

In order to formulate the Hadamard-Zolésio-type decomposition, eq. (20), we
need the outer normal vector field and an oriented tangential vector field, which
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for S1 are given by

n : S1 → R
2,

(

x1
x2

)

7→

(

x1
x2

)

, τ : S1 → R
2,

(

x1
x2

)

7→

(

−x2
x1

)

. (30)

Now, we can examine the problem for several different parameterized target
shapes ϕ̃ ∈ Emb(S1,R2). First, we can consider rescaling by a factor α ∈ (0,∞),
which lets S1 contract or expand. The target for this is given by

ϕ̃ : S1 → R
2,

(

x1
x2

)

7→ α ·

(

x1
x2

)

. (31)

Using eq. (28), the pre-shape derivative becomes

DJ(ϕid)[V ] =

∫

S1

(1− α) · 〈n, V 〉 ds. (32)

This shows that rescaling of S1 has vanishing parameterization part gT ≡ 0,
whereas the remaining shape component gN is in the style of the classical
Hadamard-Zolésio representation, given above. In particular, only vector fields
V acting in normal direction are supported.

Next, let us consider a rotation of the circle. For this, we let α ∈ [0, 2π) and
consider target rotations

ϕ̃ : S1 → R
2,

(

x1
x2

)

7→

(

cos(α) − sin(α)
sin(α) cos(α)

)

(

x1
x2

)

. (33)

Plugging this into eq. (28) and doing some reformulations, the according de-
composition becomes

DJ(ϕid)[V ] =

∫

S1

(

1− cos(α)
)

· 〈n, V 〉 ds+

∫

S1

sin(α) · 〈τ, V 〉 ds. (34)

Here we see both components of the decomposition, the first corresponding to
the normal gN , and the second corresponding to the tangential part gT . Notice
that the normal component vanishes exactly for trivial rotations, whereas the
tangential part also vanishes for the reflection at origin case, α = π.

Finally, we can also translate S1 by some fixed z ∈ R
2, which gives a target

ϕ̃ : S1 → R
2,

(

x1
x2

)

7→

(

x1
x2

)

+ z. (35)

The decomposition of the pre-shape derivative becomes

DJ(ϕid)[V ] =

∫

S1

〈n, z〉 · 〈n, V 〉 ds+

∫

S1

〈τ, z〉 · 〈τ, V 〉 ds, (36)

where decomposition into gN and gT depends on normal and tangential com-
ponents of z on S1.
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Next, we give a summary of several useful pre-shape calculus formulae. Due
to Proposition 1 and Corollary 1, they are also true for shape derivatives and
functionals.

Corollary 2 (Pre-Shape Calculus Rules) Let f, g: Emb(M,Rn+1)×
R

n+1 → R be pre-shape differentiable and differentiable in the second compo-
nent, and let h : R → R be differentiable. Let Ω ⊆ R

n+1 be an open, bounded
domain with Lipschitz boundary, Γ an n-dimensional C∞-submanifold of Rn+1.
Consider ϕ ∈ Emb(M,Rn+1) and V ∈ C∞(Rn+1,Rn+1). Then, the following
set of rules applies for pre-shape and -material derivatives, including the special
case of shape derivatives.

(i) Dmf(ϕ)[V ] = Df(ϕ)[V ] +∇fTϕ V
(ii) Dm(f · g)(ϕ)[V ] = Dmf(ϕ)[V ] · gϕ + fϕ ·Dmg(ϕ)[V ]
(iii) Dm(h ◦ f)(ϕ)[V ] = Dh(fϕ)Dmf(ϕ)[V ]
(iv) D(

∫

Ω
f dx)(ϕ)[V ] =

∫

Ω
Dmf(ϕ)[V ] + div(V )fϕ dx

(v) D(
∫

Γ
f ds)(ϕ)[V ] =

∫

Γ
Dmf(ϕ)[V ] + divΓ(V )fϕ ds

with divΓ(V ) being the tangential divergence of V on ϕ, and Dh being the total
derivative of h.

Proof Let the assumptions stated above hold. Identity (i) was already dis-
cussed in Corollary 1.

The product- and chain-rule (ii) and (iii) are simple consequences of the
definition of the material derivative eq. (17).

For (iv), the conditions for Henrot and Pierre (2018, Theorem 5.2.2) apply
by considering fϕt

(xt), a function of t ≥ 0. Alternatively, since we assumed
Lipschitz boundary for Ω, the change of variable formula is applicable and the
standard proof, found in Haslinger and Mäkinen (2003, p. 112, Lemma 3.3) can
be used as well.

The situation for (v) is more involved. For this, we refer the reader to Henrot
and Pierre (2018, Theorem 5.4.17) or Delfour and Zólesio (2001, Chapter 9.4,
Theorem 4.3). ✷

Remark 2 (Weakening Assumptions for Pre-Shape Calculus) The
formulae provided in Corollary 2 hold in far greater generality.

In particular, the chain rule (iii) can be stated for Fréchet differentiable
operators h on Banach spaces of continuous functions with the help of Delfour
and Zólesio (2001, Chapter 9, Theorem 2.5).

Also, formula (iv) for volume integrals can be stated for domains Ω which
are merely measurable, and pre-shape differentiable families of class

{fϕ ∈W 1,1(Rn+1,R)}ϕ∈Emb(M,Rn+1)

with the use of Henrot and Pierre (2018, Theorem 5.2.2).

Finally, formula (v) for boundary integrals can be generalized to compact
hypersurfaces Γ ⊂ R

n+1 of C1-regularity and pre-shape differentiable families
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of class {fϕ ∈ W 1,1(Rn+1,R)}ϕ∈Emb(M,Rn+1) by the use of Henrot and Pierre
(2018, Theorem 5.4.17).

Example 2 (Pre-Shape Parameterization Tracking Problem) With
this problem class we introduce a non-trivial example for pre-shape optimization
problems. Its pre-shape derivative, in fact, is not a classical shape derivative,
and thus is not tractable by shape calculus. Later on, this problem class will
enable us to optimize the overall mesh quality of discretizations and representa-
tions of shapes similar to deformation methods going back to Liao and Andersen
(1992). To be specific, the fiber bundle structure of Emb(M,Rn+1) offers the
possibility to modify a given shape optimization problem in such a way, that
the original solution is maintained, while at the same time optimization for the
parameterization can take place. This gives rise to several different mesh reg-
ularization algorithms, and justifies the numerical optimization procedures we
will establish in future works.

Before we further elaborate on this, we introduce the necessary vocabulary
and notation to formulate our problem in Emb(M,Rn+1) for submanifoldsM ⊂
R

n+1. First, we need the concept of local frames, which are the local orthonormal
bases of tangential vectors onM (see Lee, 2013, Chapter 8). For an open subset
U ⊆ M , a smooth local frame is a tuple of dim(M) tangential vector fields
τ := (τ1, . . . , τn), such that for each p ∈ U the tangential vectors τi(p) ∈ TpM
are linearly independent. If we have a Riemannian metric on M , then we can
additionally demand τ(p) = (τ1(p), . . . , τn(p)) to be orthonormal with respect
to the Riemannian metric for all p ∈ U , thus calling the frame (τ1, . . . , τn) local
orthonormal frame. Note that local orthonormal frames always exist, due to the
simple use of the Gram-Schmidt algorithm in tangential spaces (see Lee, 2013,
Lemma 8.13).

To achieve a natural and numerically tractable formulation of a pre-shape pa-
rameterization tracking problem, we also need to introduce the covariant deriva-
tive of an embedding ϕ ∈ Emb(M,Rn+1). For this, we use similar ideas as in
Delfour and Zólesio (2001, Chapter 9.5.6) and modify them to our situation us-
ing local orthonormal frames. Given a ϕ ∈ Emb(M,Rn+1), let τ : U → (TM)n

be a smooth local orthonormal frame on U ⊆ M and let τϕ : V → (Tϕ(M))n

be a local orthonormal frame on V ⊆ ϕ(M). Without loss of generality, we can
assume V = ϕ(U), since we can choose V = V ∩ ϕ(U). Then, we define the
local covariant derivative representation for ϕ under the choice of frames τ and
τϕ by

Dτϕ|U (p) :=







〈Dϕτ1,p, τ
ϕ

1,ϕ(p)〉 . . . 〈Dϕτn,p, τ
ϕ

1,ϕ(p)〉
...

. . .
...

〈Dϕτ1,p, τ
ϕ

n,ϕ(p)〉 . . . 〈Dϕτn,p, τ
ϕ

n,ϕ(p)〉






, (37)

where Dϕ is the Jacobian matrix of ϕ and 〈., .〉 the Euclidean scalar product of
R

n+1. We want to make clear that the covariant derivative Dτϕ should not be
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mistaken for the tangential derivative DΓϕ, which is given by (see Delfour and
Zólesio, 2001, Chapter 9.5.2)

DΓϕ = Dϕ−DϕnnT . (38)

Having numerical implementations in mind, we are also interested in the case of
shapes with non-trivial boundaries. However, when the boundary is non-trivial,
we impose restrictions on the pre-shapes permitted. Specifically, embeddings
leaving the boundary invariant are sufficient, i.e.

Emb∂M (M,Rn+1) := {ϕ ∈ Emb(M,Rn+1) : ϕ(p) = p ∀p ∈ ∂M}. (39)

For numerical routines this means that a specified boundary ∂M of the starting
shape is left fixed, whereas the interior of the shape is able to deform and change
its shape and parameterization. In the case of empty boundary, the pre-shape
space becomes Emb(M,Rn+1), meaning that shapes are allowed to move freely.

With the introduction of covariant derivatives and appropriate pre-shapes
for the boundary case, we can formulate a pre-shape parameterization tracking
problem, inspired by a least-squares formulation of the deformation method for
mesh element volume optimization, as found in Cai, Jiang and Liao (2004),
Cao, Huang and Russell (2002) and Grajewski, Köster and Turek (2009). We
remind the reader that mesh deformation methods search for a specified target
cell volume f by changing coordinates of nodes. For our formulation, we take
a slight twist by using inverse Jacobians, which changes the interpretation of
optimal ϕ and targets fϕ. In our case, fϕ describes the desired local density
of mesh nodes, whereas the authors of Cai, Jiang and Liao (2004), Cao, Huang
and Russell (2002), and Grajewski, Köster and Turek (2009) use targets f ,
describing the local cell volume. For this reason, the authors mentioned need to
use reciprocals of f , instead of reciprocals of Jacobians. Still, both formulations
are equivalent by inverting the solutions, Jacobians and targets. In addition to
targets fϕ, we also incorporate a positive function gM :M → (0,∞), which will
act as the distribution of nodes for the initial mesh.

The following proposition gives the definition, well-definedness and existence of
solutions of the pre-shape parameterization tracking problem.

Proposition 2 (Pre-Shape Parameterization Tracking Problem and
Existence of Solutions) LetM be an n-dimensional, orientable, path-conne-
cted and compact C∞-submanifold of Rn+1, possibly with non-empty boundary
∂M of C∞-regularity. Additionally, let gM : M → (0,∞) and fϕ : ϕ(M) →
(0,∞) be C∞-functions, with f having shape functionality. Further, assume the
normalization condition

∫

ϕ(M)

fϕ(s) ds =

∫

M

gM (s) ds ∀ϕ ∈ Emb∂M (M,Rn+1). (40)
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Then the following problem

min
ϕ∈Emb∂M (M,Rn+1)

1

2

∫

ϕ(M)

(

gM ◦ϕ−1(s) ·
1

detDτϕ ◦ ϕ−1(s)
−fϕ(s)

)2

ds (41)

is called pre-shape parameterization tracking problem. It is well-defined and
independent of choice of local orthornormal frames τ , τϕ on M and ϕ(M).
Further, in each fiber π(ϕ) there exists a global C∞-solution to the problem of
eq. (41), i.e. an embedding ϕ̃, satisfying

(gM ◦ ϕ̃−1) · detDτ ϕ̃−1 ≡ fϕ and ϕ̃(p) = p ∀p ∈ ∂ϕ̃(M). (42)

Proof The main ingredient of this proof is a theorem by Moser (1965), ex-
tended by Dacorogna and Moser (1990) in their Theorem 1, which guarantees
existence solutions. Due to the quadratic nature of the objective functional, it
is obvious that eq. (42) is a sufficient condition for optimality. Together with
normalization condition, eq. (40), Moser’s and Dacorogna’s theorem guarantees
existence of embeddings satisfying eq. (42), which is a polynomial PDE, by
application of Laplace’s formula for determinants.

Fix an orientation for M , ϕ ∈ Emb∂M (M,Rn+1) and let τ , τϕ be local
orthonormal frames for each ϕ ∈ Emb∂M (M,Rn+1). Well-definedness of the
integrand in the problem of eq. (41) is clear, since gM is positive and ϕ is an
immersion, making Dτϕ ∈ GL(n,R), and thus detDτϕ non-vanishing. In the
case of non-empty boundary, the integral is well-defined by using the interior of
ϕ(M), as the boundary ∂M is a set of measure zero. Independence of choice
of orientation preserving local orthonormal bases inducing the covariant deriva-
tive (see eq. (37)) is also clear, since an orientation preserving change of the
orthonormal base can be realized by multiplications with orthogonal matrices
B̃, B ∈ SO(n), and hence, by the determinant product rule, detDτϕ remains
invariant. Further, if no global orthonormal frame exists, well-definedness and
independence of choice of local orthonormal frames is guaranteed as well. This
can be ensured by using a partition of unity, which covers ϕ(M) with open
domains of local orthonormal frames, and linearity of the integral in eq. (41)
together with the previous argument about the change of orthonormal bases. ✷

Remark 3 (Hölder Regularity Case) The existence and well-definedness
result from Proposition 2 also holds in the more general context of Ck,α-Hölder
re-gularity. For given k ∈ N and α ∈ (0, 1), if M , fϕ and gM have Ck,α-
regularity, and ∂M has Ck+3,α regularity, then solutions ϕ with Ck+1,α-regularity
exist in each fiber. This stems from the regularity results in Dacorogna and
Moser (1990).

Having guaranteed the existence of solutions, we want to turn our attention
to the pre-shape derivative of the parameterization tracking problem, eq. (41).
This serves several different purposes in our studies. First, it is of numerical
interest, since we will construct several algorithms for improvement of mesh
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quality in shape optimization routines based on derivatives. At the same time,
eq. (41) serves as a non-trivial example to illustrate the application of pre-shape
calculus techniques, developed in Section 2. In particular, we will see that the
derivative to the general parameterization tracking problem, eq. (41), is not
accessible via the classical shape calculus techniques. In the following, we will
leave the target density functions fϕ general and only assume enough regularity
for the existence of the pre-shape derivative. Later in this article, we will propose
an explicit way to construct fϕ (see monitor function study by Cao, Huang and
Russell, 1999), while also ensuring existence of its material derivatives with a
closed form (cf. Section 2.5).

As we permit non-empty boundaries left to be invariant in the parameter-
ization tracking problem, the space of possible test functions V is altered in
an according way. In particular, due to invariance of ∂M , vector fields for
Emb∂M (M,Rn+1) are given by vector fields vanishing on the boundary (see
Ebin and Marsden, 1970, Theorem 8.2; Smolentsev, 2007, Theorem 3.19), i.e.

C∞
∂M (Rn+1,Rn+1) := {V ∈ C∞(Rn+1,Rn+1) : Tr|∂M (V ) = 0}. (43)

Of course, the same is true for Hölder and Sobolev regularities. With this in
mind, we can derive the pre-shape derivative of the parameterization tracking
problem.

Theorem 2 (Pre-Shape Derivative of the Pre-Shape Parameteriza-
tion Tracking Problem) Let the assumptions of Proposition 2 hold and
denote by Jτ the objective functional of the general parameterization tracking
problem of eq. (41). Also, assume enough regularity for fϕ, such that material
derivatives exist.

Then, for fixed ϕ ∈ Emb∂M (M,Rn+1) and V ∈ C∞
∂ϕ(M)(R

n+1,Rn+1), the

pre-shape derivative of eq. (41) is given by

DJτ (ϕ)[V ] = −

∫

ϕ(M)

1

2
·
(

(

gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1

)2
− f2ϕ

)

· divΓ(V )

+
(

gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 − fϕ

)

·Dm(fϕ)[V ] ds,

(44)

with Dm(fϕ) being the pre-shape material derivative of fϕ and divΓ the tan-
gential divergence on ϕ(M). The pre-shape derivative does not depend on the
choice of oriented local orthonormal frames τ, τϕ for representing the covariant
derivative Dτ .

Proof For the proof we rely on pre-shape calculus rules we have established in
Section 2. In particular, we will make use of formulae found in Corollary 2. So,
let M fulfill the assumptions made in Theorem 2. Fix a ϕ ∈ Emb∂M (M,Rn+1)
and let V ∈ C∞

∂ϕ(M)(R
n+1,Rn+1). The following arguments are all valid for

Ck,α-regularity.
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The use of pre-shape material derivative makes sense for families of dif-
ferentiable functions on varying domains {fϕ : ϕ(M) → R}ϕ∈Emb∂M (M,Rn+1)

depending smoothly on ϕ, since the limit Dmf(ϕ)[V ] involves the term fϕt
(xt).

An easy check reveals that the term is well defined, due to Definition 4 of moving
points xt and the perturbation of identity for pre-shapes, eq. (12), coinciding

xt = x0+t ·V (x0) = ϕ(ϕ−1(x0))+t ·V ◦ϕ(ϕ−1(x0)) = ϕt(ϕ
−1(x0)) ∈ ϕt(M).

(45)

However, note that in this case there is no decomposition of type of eq. (18) for
Dmf(ϕ), since xt /∈ ϕ(M) and x0 /∈ ϕt(M) in general.

With this in mind, we can apply Corollary 2 (v) to eq. (41) in order to get

DJτ (ϕ)[V ] =

∫

ϕ(M)

Dm

(1

2

(

gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 − fϕ

)2
)

[V ]

+
1

2
divΓ(V )

(

gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 − fϕ

)2

ds. (46)

For simplification of the material derivative of the integrand, we employ our
assumption on the existence of material derivatives for fϕ, together with the
chain- and product rule for material derivatives (from Corollary 2), to see

Dm

(1

2

(

gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 − fϕ

)2
)

[V ]

= (gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 − fϕ

)

·

(

Dm(gM ◦ ϕ−1)[V ] ·
1

detDτϕ
◦ ϕ−1

−gM ◦ ϕ−1 ·
1

(detDτϕ)2
◦ ϕ−1 ·Dm(detDτϕ ◦ ϕ−1)[V ]−Dm(fϕ)[V ]

)

.

(47)

In the following, we examine the remaining material derivatives in Section 2.2,
except for Dm(fϕ)[V ], as we let fϕ remain general. To avoid confusion, we re-
mind the reader that we are confronted with mappings h taking two arguments,
one explicitly being a pre-shape, making them operators of the form

h·(·) := h(·, ·) : Emb∂M (M,Rn+1)×M → R, (ϕ, p) 7→ hϕ(p). (48)

We will use the following relationship of embeddings and the domain perturba-
tion of identity

ϕt(p) = (Tt ◦ ϕ)(p) ∀p ∈M ⇔ (ϕ−1
t ◦ Tt)(q) = ϕ−1(q) ∀q ∈ ϕ(M),

(49)

where ϕt is the perturbation of identity for pre-shapes (cf. eq. (12)) for suffi-
ciently small t > 0. If material derivatives of h are assumed to exist, eq. (49)
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leads to the following elementary, but interesting, identity

Dm

(

hϕ ◦ ϕ−1
)

[V ] =
d

dt |t=0
h(ϕt, ϕ

−1
t ◦ Tt) =

d

dt |t=0
h(ϕt, ϕ

−1) = D(hϕ)[V ] ◦ ϕ−1. (50)

Applying this to the first remaining material derivative in Section 2.2, we get

Dm

(

gM ◦ ϕ−1
)

[V ] = D(gM )[V ] ◦ ϕ−1 = 0, (51)

since gM is does not depend on the choice of ϕ ∈ Emb(M,Rn+1).

Next, we apply analogous techniques to the second material derivative.
Hence, for calculation of the material derivative of detDτϕ ◦ ϕ−1 it is suffi-
cient to calculate its pre-shape derivative. Also, since the flow (ϕt)t∈[0,ε) given
by the perturbation of identity in direction V (cf. eq. (12)) is differentiable in t,
we can employ Jacobi’s formula for the derivative of the determinant at t0 = 0,
to arrive at

Dm

(

detDτϕ ◦ ϕ−1
)

[V ] =
( d

dt |t=t0

detDτϕt

)

◦ ϕ−1

= tr
(

Adju(Dτϕt0)
d

dt |t=t0

Dτϕt

)

◦ ϕ−1

t0=0
= tr

(

Adju(Dτϕ)Dτ (V ◦ ϕ)
)

◦ ϕ−1,

(52)

where Adju(·) is the adjugate matrix and tr(·) is the trace operator for matrices.

Knowing that Dτϕ is invertible for all p ∈M due to ϕ ∈ Emb(M,Rn+1), we
can use Cramer’s rule to express the adjugate in terms of inverses. Also, we can
use invariance of the trace operator under permutations of multiplicative order
of matrices, giving us

tr
(

Adju(Dτϕ)Dτ (V ◦ ϕ)
)

◦ ϕ−1 =

= tr
(

det(Dτϕ) ·Dτϕ−1Dτ (V ◦ ϕ)
)

◦ ϕ−1

= (detDτϕ) ◦ ϕ−1 · tr
(

(Dτϕ)−1DτV (ϕ)Dτϕ
)

◦ ϕ−1

= (detDτϕ) ◦ ϕ−1 · tr
(

DτV (ϕ)
)

◦ ϕ−1

= (detDτϕ) ◦ ϕ−1 · divΓ(V ). (53)

Using eq. (51) and eq. (53) in eq. (47), and plugging the material derivative
into eq. (46), we arrive at
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DJτ (ϕ)[V ] =

∫

ϕ(M)

(

gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 − fϕ

)

·
(

− gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 · divΓ(V )−Dm(fϕ)[V ]

)

+
1

2
divΓ(V )

(

gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 − fϕ

)2

ds

= −

∫

ϕ(M)

(

gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 − fϕ

)

·

(

1

2

(

gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 + fϕ

)

· divΓ(V ) +Dm(fϕ)[V ]

)

ds

= −

∫

ϕ(M)

1

2
·
(

(gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1)2 − f2ϕ

)

· divΓ(V )

+
(

gM ◦ ϕ−1 ·
1

detDτϕ
◦ ϕ−1 − fϕ

)

·Dm(fϕ)[V ] ds, (54)

which is the desired pre-shape derivative, eq. (44). The covariant derivative
Dτϕ, and hence also the pre-shape derivative, eq. (44), is independent of the
choice of orthonormal frames by similar reasoning as in the first part of the
proof of Proposition 2. ✷

In general cases, DJτ (ϕ)[V ] is non-vanishing for vector fields V tangential
to ϕ(M). By the structure theorem for pre-shape derivatives, Theorem 1, the
globally vanishing tangential pre-shape derivatives indicate a functional, which
is almost of classical shape functional type. If we take the form of the pre-
shape derivative, as given in eq. (44), this clearly means that eq. (41) cannot
be formulated as a shape optimization problem, nor is it tractable by classical
shape calculus.

In the light of the main Structure Theorem 1 for pre-shape derivatives, we
can further refine the representation of the pre-shape derivative, eq. (44), by de-
composing it into normal and tangential parts. Interestingly, if the user wants
to optimize for mesh quality by using pre-shape derivative based parameteri-
zation tracking, it is not recommendable to use the full pre-shape derivative,
found in eq. (44). Instead, by decomposing the pre-shape derivative, we will see
that the tangential component is sufficient for this task. If a special case of the
pre-shape derivatives normal component is used, we recover numerical methods
solving Plateau’s problem by constructing minimal surfaces (see Dziuk, 1990;
Pinkall and Polthier, 1993; Dziuk and Hutchinson, 1999). In some sense or-
thogonal to this, the use of tangential components gives algorithms resembling
the deformation method for the optimization of mesh quality (see Liao and
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Anderson, 1992; Grajewski, Köster and Turek, 2009; Cao, Huang and Russell,
1999).

2.3. Decomposing the pre-shape derivative

To derive this decomposition, notice the following informal relationship be-
tween tangential divergence and the mean curvature κ for hypersurfaces for
V ∈ C∞(Rn+1,Rn+1) (see Lee, 2009, Definition 4.23)

divΓ(〈V, n〉 ·n) = (∇Γ〈V, n〉)
Tn+ 〈V, n〉 ·divΓ(n) = dim(M) · 〈V, n〉 ·κ, (55)

due to orthogonality of tangential gradients ∇Γ(〈V, n〉) and the outer normal
vector field n on the interior of ϕ(M). Also, let us briefly assume fϕ : Rn+1 → R

mapping from the whole ambient space, which simplifies using normal deriva-
tives of fϕ for the decomposition. With this, and the assumption of constant
target parameterizations for each fiber, i.e. fϕ = fϕ◦ρ for all ρ ∈ Diff(M), we
can refine eq. (44) to

DJτ (ϕ)[V ] = 〈gNϕ , V 〉+ 〈gTϕ , V 〉 ∀V ∈ C∞(Rn+1,Rn+1), (56)

with shape (i.e. normal) component

〈gNϕ , V 〉 = −

∫

ϕ(M)

dim(M)

2
·
(

(

gM ◦ ϕ−1 · detDτϕ−1
)2

− f2ϕ

)

· κ · 〈V, n〉

+
(

gM ◦ ϕ−1 · detDτϕ−1 − fϕ

)

·
(∂fϕ
∂n

· 〈V, n〉+D(fϕ)[V ]
)

ds (57)

and pre-shape (i.e. tangential) component

〈gTϕ , V 〉 = −

∫

ϕ(M)

1

2
·
(

(

gM ◦ ϕ−1 · detDτϕ−1
)2

− f2ϕ

)

· divΓ(V − 〈V, n〉 · n)

+
(

gM ◦ ϕ−1 · detDτϕ−1 − fϕ

)

· ∇Γf
T
ϕ V ds. (58)

Here, D(fϕ) is the classical shape derivative of fϕ. The first integral corresponds
to the classical shape derivative component gN of decomposition, eq. (20), acting
on normal directions. Next, the second integral acts on tangential directions and
therefore corresponds to the parameterization part gT in eq. (20).

2.4. Normal component: minimal surfaces

For illustration, let us deviate from normalization of the target (cf. eq. (40)) by
choosing fϕ = 0 and gM = 1 for all ϕ ∈ Emb∂M (M,Rn+1).

In this situation, the classical shape derivative component of DJτ (ϕ) is given
by

〈gNϕ , V 〉 = −
dim(M)

2
·

∫

ϕ(M)

(

detDτϕ−1(s)
)2

· κ(s) ·
〈

V (s), n(s)
〉

ds. (59)
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Since ϕ are embeddings and M compact, the corresponding Jacobians are
bounded and non-vanishing. In our special situation this means that the hori-
zontal component of the pre-shape derivative, eq. (59), is vanishing exactly for
shapes with vanishing mean curvature κ. Put differently, the minimal surfaces
and their higher dimension analogues are exactly the stationary points for this
horizontal component.

Hence, a gradient ascent using eq. (59), resembles an algorithm for evolu-
tionary surfaces, proposed by Dziuk (1990), which solves Plateau’s problem by
approximating a mean curvature flow. Note that an ascent is necessary, since
our formulation of the pre-shape parameterization tracking problem involves
inverse Jacobians, which is connected to Plateau’s problem by

max
ϕ∈Emb∂M (M,Rn+1)

∫

ϕ(M)

(

detDτϕ−1(s)
)2

ds⇔

⇔ min
ϕ∈Emb∂M (M,Rn+1)

∫

M

| detDτϕ(s)| ds. (60)

This also illustrates the qualitative properties of a steepest descent using the
complete pre-shape derivative. Briefly stated, if less vertices are desired at a
location, the gradient descent in normal direction tends to blow up the shape,
increasing distances of neighboring vertices. If more vertices are desired, it tends
to locally flatten the shape, driving the nodes together. This shows that ap-
plication of the full pre-shape derivative distorts the shape in normal direction,
hence interfering with the actual shape optimization problem to be regularized.

Use of the tangential component in eq. (56) leads to algorithms similar to the
mesh deformation methods from Liao and Anderson (1992), Grajewski, Köster
and Turek (2009), and Cao, Huang and Russell (2002). Such a routine is dis-
cussed and implemented in the numerical Section 3. We will use it in upcoming
works to construct various regularization methods for shape optimization prob-
lems.

An illustrative numerical example of a pre-shape derivative for the parame-
terization tracking problem and its decomposition is shown in Fig. 5 for target
fϕ(x, y, z) ≡

1∫
ϕ(M)

1 ds
· x and a sphere centered at (0.5, 0.5, 0.5).

2.5. A class of externally defined targets fϕ

As we have left the target fϕ unspecified during derivation of the pre-shape
derivative, eq. (44), we want to give a constructive example, which can be
implemented in numerical routines. To do so, we have to keep in mind that
the normalization requirement, eq. (40), on fϕ has to be fulfilled. One way
to accomplish this is by defining fϕ using a given globally defined function
q : Rn+1 → (0,∞). By assuming H2-regularity for q, existence of pre-shape
derivatives and their closed form as in eq. (44) is guaranteed. The corresponding
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(a) Normal component representing the
classical shape part

(b) Tangential component representing the
parameterization part

(c) Complete pre-shape gradient in volume
mesh representation

(d) Slice through xy-plane at center of com-
plete volume pre-shape gradient

Figure 5: Negative pre-shape gradient of Jτ on a sphere scaled by 0.02 using
target fϕ(x, y, z) ≡

1∫
ϕ(M)

1 ds
·x, which is depicted by color, and gradient repre-

sentation by a linear elasticity metric. Color shifting towards red means higher
desire for more volume/vertex allocation

target vertex density on a shape ϕ(M) is then given by

fϕ =

∫

M
gM ds

∫

ϕ(M)
q|ϕ(M) ds

· q|ϕ(M), (61)

which is well defined due to the trace theorem for Sobolev functions.

If the target fϕ is chosen such that normalization eq. (40) is not fulfilled,
solutions to the parameterization tracking problem, eq. (41), might still exist.
Depending on whether

∫

M
gM ds is greater or smaller than

∫

M
fϕ ds, the gra-
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dient flow, generated by the pre-shape derivative, eq. (44), locally shrinks or
blows up the shape ϕ(M) in normal direction to compensate for the difference.

Next, we calculateDm(fϕ)[V ], which exists since we have q|ϕ(M) ∈ H1
(

ϕ(M)
)

.
For this, we apply pre-shape calculus rules established in Corollary 2. Also, since
the external force q : Rn+1 → (0,∞) is defined on the entire ambient space, we
can make direct use of decomposition for pre-shape material derivatives from
Corollary 1. Together with the fact that q and gM do not depend on ϕ, this
gives

Dm(fϕ)[V ] = Dm

(

∫

M
gM ds

∫

ϕ(M)
q ds

· q

)

[V ]

= −

∫

M
gM ds

( ∫

ϕ(M)
q ds

)2 · q ·

∫

ϕ(M)

(

Dm(q)[V ] + divΓ(V ) · q
)

ds

+

∫

M
gM ds

∫

ϕ(M)
q ds

·
(

D(q)[V ] +∇qTV
)

= −

∫

M
gM ds

( ∫

ϕ(M)
q ds

)2 · q ·

∫

ϕ(M)

(

∇qTV + divΓ(V ) · q
)

ds

+

∫

M
gM ds

∫

ϕ(M)
q ds

· ∇qTV

= −

∫

M
gM ds

( ∫

ϕ(M)
q ds

)2 · q ·

∫

ϕ(M)

( ∂q

∂n
+ dim(M) · κ · q

)

· 〈V, n〉 ds

+

∫

M
gM ds

∫

ϕ(M)
q ds

· ∇qTV, (62)

where the last equality stems from the Stokes theorem and our assumption on
V to vanish on the boundary ∂ϕ(M), and κ denotes the mean curvature as in
eq. (55).

Next, we illustrate how the closed pre-shape derivative formula can be used
to derive additional important properties of pre-shape optimization problems. In
particular, we will see that local and global solutions parameterization tracking
in each fiber coincide.

Proposition 3 (Characterization of Global Solutions by Fiber Sta-
tionarity) Let assumptions of Theorem 2 be satisfied. Then the following
statements are equivalent:

(i) ϕ ∈ Emb(M,Rn+1) is a fiber stationary point of eq. (41), i.e.

DJτ (ϕ)[V ] = 0 ∀V ∈ C∞
∂M (Rn+1,Rn+1) with 〈Tr| intϕ(M)[V ], n〉2 = 0,

(63)
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where intϕ(M) is the interior of ϕ(M) and n is the outer normal field on
intϕ(M).

(ii) ϕ is a global solution to eq. (41), and, in particular, it satisfies

gM ◦ ϕ−1 · detDτϕ−1 = fϕ on ϕ(M). (64)

(iii) the complete pre-shape derivative of Jτ vanishes in ϕ, i.e.

DJτ (ϕ)[V ] = 0 ∀V ∈ C∞
∂M (Rn+1,Rn+1). (65)

In particular, its normal component gNϕ in ϕ vanishes.

The necessary first order condition regarding only directions V tangential to
ϕ(M) is already a sufficient condition for being a global minimizer to Jτ .

Proof Let us assume the setting of Theorem 2. We show the equivalence of
all assertions by a circular argument ’(i) =⇒ (ii) =⇒ (iii) =⇒ (i)′.

As a start, implication ’(ii) =⇒ (iii)’ is trivial. By assuming (ii), we
can use relation of eq. (64) to see that the two integrands of DJτ (ϕ)[V ] (cf.
eq. (44)) featuring gM ◦ ϕ−1 · detDτϕ−1 and fϕ are zero for all directions V ∈
C∞

∂M (Rn+1,Rn+1). The same argument applies for the normal component gNϕ by
using the explicit decomposition, eq. (56). Hence, we immediately get eq. (65).

The non-trivial part is to prove ’(i) =⇒ (ii)’. Let us assume (i) by fixing
a ϕ ∈ Emb(M,Rn+1), satisfying fiber stationarity, eq. (63). With the pre-
shape derivative formula from Theorem 2 at hand, we can apply an integration
by parts on manifolds (see Taylor, 2011, Chapter 2.2, Proposition 2.3), either
using the fact that M is closed or V is vanishing on the boundary, to get

DJτ (ϕ)[V ] =

∫

ϕ(M)

(

(gM ◦ ϕ−1 · detDτϕ−1) ·
(

∇Γ(g
M ◦ ϕ−1 · detDτϕ−1)−∇Γfϕ

)

)T

V ds,

(66)

where we also used the assumption in Proposition 2 that fϕ is constant in each
fiber and 〈Tr|ϕ(M)[V ], n〉2 = 0 to reformulate Dm(fϕ)[V ]. Due to assumption
of eq. (63) of fiber stationarity, we know that eq. (66) equals zero for all V
tangential on ϕ(M) up to the boundary. So, in the interior of ϕ(M) we get

(gM ◦ ϕ−1 · detDτϕ−1) ·
(

∇Γ

(

gM ◦ ϕ−1 · detDτϕ−1
)

−∇Γfϕ

)

≡ 0. (67)

By assumption, we have gM > 0, so, together with the non-vanishing determi-
nant by ϕ ∈ Emb(M,Rn+1), this implies

∇Γ(g
M ◦ ϕ−1 · detDτϕ−1 − fϕ) ≡ 0. (68)

Since the involved functions are Lipschitz continuous, and as Proposition 3
assumes M to be smooth and path connected, we can derive constancy of the
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involved term. However, after using a pull-back and normalization assumption,
eq. (40), we see that the discussed constant is 0, giving us

gM ◦ ϕ−1 · detDτ (ϕ)−1 = fϕ on ϕ(M). (69)

Since ϕ is chosen from Emb∂M (M,Rn+1), it leaves the boundary fixed, finally
giving ’(i) =⇒ (ii)’.

Lastly, we easily see that ’(iii) =⇒ (i)’. Since the complete vanishing of the
pre-shape derivative, eq. (65), implies, in particular, its vanishing for directions
V tangential to ϕ(M), which is eq. (63), and this concludes the proof. ✷

Proposition 3 tells us that there are no stationary points other than global
solutions to the pre-shape parameterization tracking problem, eq. (41). This
strongly resembles the situation for convex optimization problems, where the
only candidates for local optimality are indeed global solutions.

Notice that Proposition 3 gives the existence of stationary points ϕ for each
shape. Since stationary points are global solutions, we can simply use the exis-
tence result of Proposition 2 for this.

Additionally, Proposition 3 guarantees that optimization with the tangen-
tial component of pre-shape derivative eq. (44) is sufficient for reaching a glob-
ally optimal solution for (41). This permits the design of regularizations for
shape optimization algorithms using pre-shape parameterization tracking with
the property to leave the shape at hand invariant, while at the same time finding
an optimal parameterization of the respective shape.

3. Numerical tests of parameterization tracking involving

pre-shape derivatives

We have now finished our introduction of pre-shape calculus and its applica-
tion to parameterization tracking problems. In order to test our theoretical
results, we present three implementations of pre-shape gradient descent meth-
ods for the parameterization tracking problem. For this we use the open-source
finite-element software FEniCS (see Logg et al., 2012; Alnaes et al., 2015). Con-
struction of meshes is done via the free meshing software Gmsh (see Geuzaine
and Remacle, 2007). We use a single core of an Intel(R) Core(Tm) i3-8100 CPU
at 3.60 GHz featuring 16 GB RAM. The single core runs at 800 MHz while the
code is executed on a virtual machine.

In the following, we show three implementations solving the parameteri-
zation tracking problem, eq. (41), by using the tangential component of the
pre-shape derivative seen in decomposition, eq. (56). The solution process also
features a simple backtracking line search, which scales the initial gradient of
the current iteration Ui according to a given factor c and rescales it by 0.5 if no
sufficient decrease in J is apparent. In order to apply a descent algorithm, we
are in need of pre-shape gradients. Because gradients are defined with respect
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to a sufficient bilinear form, we have to choose a form which fits our application.
Since we are in infinite dimensions, there is a multitude of non-equivalent choices
to represent derivatives as gradients. These can differ in resulting regularity of
the gradients, and also in computational expense. As a bilinear form, we choose
the weak formulation of the linear elasticity as proposed in Schulz, Siebenborn
and Welker (2016), which gives us H1-regularity of pre-shape gradients. By only
using the shear component of the linear elasticity, featuring the second Lamé
parameter µelas, and adding a zero order term, the gradient U is calculated by
solving its representing system

αLE ·

∫

D

µelas · ǫ(U) : ǫ(V ) dx+ αL2 · (U, V )L2(D) = DJτ (ϕ)[V ]

∀V ∈ H1
0 (D,R

n+1)

ǫ(U) =
1

2
(∇UT +∇U)

ǫ(V ) =
1

2
(∇V T +∇V )

U = 0 on ∂D. (70)

Here, we choose the weights αLE, αL2 > 0. For µmax, µmin > 0, the second Lamé
parameter µelas is chosen as the solution of the Poisson problem

−∆µelas = 0 in D

µelas = µmax on ϕ(M)

µelas = µmin on ∂D.

(71)

Solving eq. (70) on the entire hold-all domain D gives us a volume representation
U of the pre-shape derivative DJτ . The pre-shape gradient system of eq. (70)
is assembled in FEniCS and solved with a sparse LU method from PETSc used
as a linear algebra backend.

The first example shows an application of the parameterization tracking
problem for improving the quality of a given hold-all domain D = [0, 1]2 ⊂ R

2.
This is realized by using an unstructured 2-dimensional volume mesh created
via Gmsh, featuring 4262 triangular cells and 2212 nodes. Then we distort the
mesh quality of this unstructured mesh by applying

ϕ0

(

x
y

)

=

(

0.025 · sin(25.5 · x)
0

)

(72)

as a deformation to the interior of D. The deformed initial mesh ϕ0(D) is
depicted in Fig. 6 (a). Notice that in this scenario the initial model M is given
by the hold-all domain D = [0, 1]2 with non-trivial boundary ∂D. Therefore,
we are in the situation, where the boundary ∂D is left invariant (cf. eq. (39)).
Also, there is no normal component of the pre-shape derivative in this case, as
the codimension of D ⊂ R

2 is zero.
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To formulate the parameterization tracking problem of eq. (41), we need to
specify an initial point distribution gM and target fϕ. Here, the target chosen
is given by the constant

fϕ ≡
1

∫

D
1 dx

. (73)

This ensures that a uniform cell volume distribution of the hold-all domain is
targeted. The initial point distribution gM is represented by using a continuous
Galerkin Ansatz with linear elements. Degrees of freedom are situated at the
mesh vertices and set to the average of inverses of surrounding cell volumes, i.e.

gM (pi) =
1

|Ci|
·
∑

C∈Ci

1
∫

C
1 dx

. (74)

Here pi is a mesh vertex and Ci is the set of its neighboring cells C. Finally, the
resulting function is normed to satisfy the demanded normalization condition,
eq. (40), of the parameterization tracking problem. The initial point distribution
estimated by this procedure is shown in Fig. 6 (a).

With both gM and fϕ specified, the target Jτ and its pre-shape deriva-
tive DJτ can be assembled. For the gradient representation we use weights
αLE = 0.02, αL2 = 1 and Lamé parameters µmax = µmin = 1, resulting in con-
stant µelas = 1. An initial scaling factor of c = 0.01 for the negative gradient
during line search is applied. The method successfully exits after 37.07s and 45
iterations. Results of the pre-shape gradient descent using the tangential com-
ponent of the pre-shape derivative and the described methodology are shown in
Figs. 6 and 8.

For our second example, we use the exactly same parameters as in the first
example. Note that, in particular, the starting mesh and therefore its initial
volume distribution gM are the same as in the first example. We can see an
illustration in Fig. 6 (a). To show the general applicability of parameterization
tracking, we replace the uniform target fϕ from eq. (73) by a more complicated
non-uniform target

fϕ =

∫

[0,1]

∫

[0,1]
gM (x, y) dx dy

∫

[0,1]

∫

[0,1]
2 + cos

(

5 · 2π ·
(

(x− 0.35)2 + 2 · (y − 0.4)2
)

)

dx dy
·

·

(

2 + cos
(

5 · 2π ·
(

(x− 0.35)2 + 2 · (y − 0.4)2
)

)

)

. (75)

The pre-shape gradient descent for this non-uniform target achieves convergence
after 38.12 s and 46 iterations. We visualize an intermediate mesh, and the final
mesh in Figs. 6 (c) and (d). The target function values Jτ (ϕi) and pre-shape
gradient norms are shown in Fig. 8. Interestingly, notice that the intermediate
mesh (c) looks like a superposition of the final and initial meshes (d) and (a).
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Essentially, this is an illustration of snapshots from a discretized flow in the fiber
of Emb(D,D), corresponding to the shape D, which is abstractly visualized in
Fig. 2. We see in Fig. 6 (d) that the prescribed non-uniform cell volume dis-
tribution is achieved, even though the initial mesh in Fig. 6 (d) has degenerate
cells distributed on vertical lines.

Our third example applies the parameterization tracking problem to a sphere
centered in the hold-all domain D = [0, 1]3 ⊂ R

3. It acts as the modeling man-
ifold M and its initial parameterization ϕ0 is given by the identity embedding
it into the hold-all domain. The initial shape is a structured triangular surface
mesh, approximating a sphere centered in (0.5, 0.5, 0.5) with radius 0.3 using
Gmsh. It consists of 6 240 triangular cells and 3 122 vertices on the surface.
The sphere is embedded in a hold-all domain consisting of 21 838 tetraedic cells
and 4 059 nodes.

For the third example we target a non-uniform surface cell volume distribu-
tion given by

fϕ





x
y
z



 =
1

∫

ϕ(M)
1 + 1

2 · sin(10 · 2π · x) ds
·
(

1 +
1

2
· sin(10 · 2π · x)

)

. (76)

The target function is of the form of eq. (61), which permits the use of the
material derivative formula of eq. (62) for assembling the pre-shape derivative
DJτ . At the same time, it satisfies the normalization condition of eq. (40). Also,
we set the initial vertex distribution to a constant

gM ≡
1

∫

M
1 ds

. (77)

In order to calculate covariant derivatives and associated Jacobian deter-
minants, we apply a Gram-Schmidt algorithm to construct local tangential or-
thonormal bases. Here, we choose weights αLE = 0.02, αL2 = 1 and Lamé
parameters µmax = 30, µmin = 5 for gradient representation. The line search
employs an initial scaling factor c = 0.001 for the negative gradient. For this
scenario, the gradient representation of the pre-shape derivative, and the result-
ing surface mesh with its associated vertex distribution are depicted in Fig. 7.
The method successfully exits after 1256.78 s and 48 iterations. Target function
values Jτ (ϕi) and pre-shape gradient norms are shown in Fig. 8. In the light
of Proposition 3, we see that the gradient norm and target values converge si-
multaneously by using tangential components of DJτ only. Also, the shape of
the sphere is left invariant, which would not be the case if normal components
or the full pre-shape derivative (cf. Fig. 5) were used.

4. Conclusion and outlook

In this work we introduced a unified framework to formulate shape optimization
and mesh quality optimization problems. A calculus for pre-shape derivatives,
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(a) Initial mesh ϕ0(M)
(b) Final mesh ϕ45(M) for uniform target

(c) Intermediate mesh ϕ6(M) for non-
uniform target

(d) Final mesh ϕ46(M) for non-uniform tar-
get

Figure 6: (a) Initial point distribution gM depicted by color on the distorted
initial mesh ϕ0(M).
(b) Final mesh ϕ45(M) for the uniform target after 45 pre-shape gradient de-
scent iterations with associated point distribution gM ◦ ϕ−1

45 · detDϕ−1
45 shown

in color.
(c) Intermediate mesh ϕ6(M) for the non-uniform target after 6 pre-shape gra-
dient descent iterations with associated point distribution gM ◦ ϕ−1

6 · detDϕ−1
6

shown in color.
(d) Final mesh ϕ46(M) for the non-uniform target after 46 pre-shape gradient
descent iterations with associated point distribution gM ◦ϕ−1

46 ·detDϕ−1
46 shown

in color.
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(a) gM and −U on ϕ0(M) (b) gM ◦ ϕ−1
48 · detDϕ−1

48 on ϕ48(M)

Figure 7: (a) Constant initial point distribution gM and negative pre-shape
derivative −DJτ (ϕ0) represented via eq. (70) on the initial surface mesh ϕ0(M)
scaled by 0.03.
(b) Resulting surface mesh ϕ48(M) after 48 pre-shape gradient descent iterations
with associated point distribution gM ◦ ϕ−1

48 · detDϕ−1
48 shown in color

(a) Jτ (ϕi) (b) ‖Ui‖L2(D,Rn+1)

Figure 8: (a) Values for the pre-shape parameterization tracking target Jτ (ϕi)
for iterates ϕi of the tangential pre-shape derivative component based steepest
descent method. Target for the 3D sphere case is scaled by 3.
(b) L2-norms ‖Ui‖L2(D,Rn+1) of the gradient representations Ui of pre-shape
derivatives for each iterate ϕi. Gradient norms for the 3D sphere case are
scaled by 25

which act in normal and tangential directions, and the corresponding structure
theorems were derived. In particular, rules and problem formulations from clas-
sical shape optimization carry over to the pre-shape setting. These techniques
were tested on a class of parameterization tracking problems. Resulting nu-
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merical implementations of a gradient descent method, based on decomposed
pre-shape derivatives, show promising results for optimization of volume- and
surface mesh quality.

In forthcoming works we will derive efficient algorithms harnessing the op-
portunity of simultaneously solving shape optimization problems and improving
mesh quality of shapes and ambient spaces. For this, we will design various tar-
gets for parameterization tracking, giving a desired type of mesh for the user.
Also, we will define pre-shape Hessians to harness second order information.
(Quasi-)Newton methods in the context of pre-shape optimization, as well as
an optimal choice of pre-shape gradient representations, will enhance the per-
formance of these algorithms.

Acknowledgements

The authors would like to thank Leonhard Frerick (Trier University) and Jochen
Wengenroth (Trier University) for a helpful and interesting discussion about
differentiability in infinite dimensions. This work has been supported by the
BMBF (Bundesministerium für Bildung und Forschung) within the collabora-
tive project GIVEN (FKZ: 05M18UTA). Further, the authors acknowledge the
support of the DFG research training group 2126 on algorithmic optimization.

References

Algorri, M.E. and Schmitt, F. (1996) Mesh Simplification. In: Computer
Graphics Forum, 15, 77–86. Wiley Online Library.

Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B.,
Logg, A., Richardson, C., Ring, J., Rognes, M.E. and Wells,
G.N. (2015) The FEniCS project version 1.5. Archive of Numerical
Software, 3(100).

Banyaga, A. (1974) Formes-volume sur les variétés a bord. Enseignement
Math, 20(2): 127–131.

Bauer, M., Bruveris, M. and Michor, P.W. (2014) Overview of the
Geometries of Shape Spaces and Diffeomorphism Groups. Journal of
Mathematical Imaging and Vision, 50(1-2): 60–97.

Berggren, M. (2010) A Unified Discrete–Continuous Sensitivity Analysis
Method for Shape Optimization. In: Applied and Numerical Partial Dif-
ferential Equations, Computational Methods in Applied Sciences, 15, 25–
39. Springer.

Binz, E. and Fischer, H.R. (1981) The manifold of embeddings of a closed
manifold. In: Differential Geometric Methods in Mathematical Physics,
310–325. Springer.

Bochev, P., Liao, G. and dela Pena, G.(1996) Analysis and Computation
of Adaptive Moving Grids by Deformation. Numerical Methods for Partial
Differential Equations: An International Journal, 12(4): 489–506.



Pre-shape calculus: foundations and application to mesh quality optimization 299

Cai, X., Jiang, B. and Liao, G. (2004) Adaptive Grid Generation Based
on the Least-Squares Finite-Element Method. Computers & Mathematics
with Applications, 48(7-8): 1077–1085.

Cao, W., Huang, W. and Russell, R.D. (1999) A Study of Monitor Func-
tions for Two-Dimensional Adaptive Mesh Generation. SIAM Journal on
Scientific Computing, 20(6): 1978–1994.

Cao, W., Huang, W. and Russell, R.D. (2002) A Moving Mesh Method
Based on the Geometric Conservation Law. SIAM Journal on Scientific
Computing, 24(1): 118–142.

Dacorogna, B. and Moser, J. (1990) On a Partial Differential Equation
Involving the Jacobian Determinant. In: Annales de l’Institut Henri
Poincare (C) Non Linear Analysis, 7, 1–26. Elsevier.

Delfour, M.C. and Zolésio, J.-P. (2001) Shapes and Geometries: Metrics,
Analysis, Differential Calculus, and Optimization, Advances in Design and
Control, 22. SIAM, 2nd edition.

Dziuk, G. (1990) An Algorithm for Evolutionary Surfaces. Numerische
Mathematik, 58(1): 603–611.

Dziuk, G. and Hutchinson, J. (1999) The Discrete Plateau Problem: Al-
gorithm and Numerics. Mathematics of Computation, 68(225): 1–23.

Ebin, D.G. and Marsden, J. (1970) Groups of Diffeomorphisms and the
Motion of an Incompressible Fluid. Ann. Math., 92(1): 102–163.

Etling, T., Herzog, R., Loayza, E. and Wachsmuth, G. (2018) First
and second order shape optimization based on restricted mesh deforma-
tions. arXiv preprint arXiv:1810.10313.

Field, D.A. (1988) Laplacian Smoothing and Delaunay Triangulations. Com-
munications in Applied Numerical Methods, 4(6): 709–712.

Freitag, L.A. (1997) On combining Laplacian and optimization-based mesh
smoothing techniques. Technical report, Argonne National Lab., IL
(United States).

Frey, P.J. and Borouchaki, H. (1999) Surface Mesh Quality Evaluation.
International Journal for Numerical Methods in Engineering, 45(1): 101–
118.

Geuzaine, C. and Remacle, J.-F. (2007) Gmsh: A Three-Dimensional
Finite Element Mesh Generator with Built-In Pre-and Post-Processing
Facilities. In Proceedings of the Second Workshop on Grid Generation for
Numerical Computations, Tetrahedron II.
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