PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Ionic Liquids UV-VIS and FTIR Spectra before and after Heating and Spruce Groundwood Dissolution

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie widm UV-VIS i FT-IR cieczy jonowych przed i po ogrzewaniu oraz wprowadzeniu ścieru świerkowego
Języki publikacji
EN
Abstrakty
EN
The absorption of 1-butyl-3-methylimidazolium chloride and acetate taken from commercial packaging was studied by means of UV-VIS and infrared spectroscopy with some differences observed. Further research showed that heating both 1-butyl-3-methylimidazolium chloride and acetate alone, as well as in the presence of wood pulp, causes the darkening of these ionic liquids. Changes in the colour of ionic liquids associated with a variation in the absorption characteristics of pure ionic liquids and wood solutions in these liquids in UV and visible light are expressed primarily in the widening of the absorption bands. The presence of coloured products formed during their heating, as well as dissolution of the chemical components of wood in ionic liquids, had relatively little effect on the position of individual absorption bands in the spectrum obtained by the FT-IR method. The small differences in the absorption of spruce groundwood solutions in ionic liquids in IR as compared to pure ionic liquids suggest that strong chromophore groups in ionic liquids are created without serious reconstruction of their structure.
PL
W pracy zbadano absorpcję chlorku i octanu 1-butylo-3-metyloimidazoliowego za pomocą spektroskopii UV-VIS i spektroskopii w podczerwieni (FT-IR), zaobserwowano pewne różnice. Dalsze badania wykazały, że zarówno ogrzewanie samego chlorku lub octanu 1-butylo-3-metyloimidazoliowego, jak i ogrzewanie cieczy jonowych, w których rozpuszczono ścier drewna świerkowego, powoduje ciemnienie tych cieczy jonowych. Zmiany barwy cieczy jonowych, związane ze zmianą charakterystyki absorpcji czystych cieczy jonowych i roztworów drewna w tych cieczach w świetle UV i widzialnym wyrażają się przede wszystkim w poszerzaniu pasm absorpcji. Obecność barwionych produktów ogrzewania badanych cieczy jonowych, jak również rozpuszczanie w nich chemicznych składników drewna, wywiera stosunkowo niski wpływ na położenie poszczególnych pasm absorpcji w widmie uzyskanym metodą FT-IR. Niewielkie różnice w widmach FT-IR cieczy jonowych, zawierających rozpuszczony ścier świerkowy w porównaniu z czystymi cieczami jonowymi, mogą wynikać z małego stężenia ścieru w tych cieczach jonowych.
Rocznik
Strony
118--123
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Lodz University of Technology, Institute of Papermaking and Printing, Fibrous Papermaking Pulps Technology Division, ul. Wolczanska 223, 90-924 Łódź, Poland
  • Lodz University of Technology, Institute of Papermaking and Printing, Fibrous Papermaking Pulps Technology Division, ul. Wolczanska 223, 90-924 Łódź, Poland
  • Lodz University of Technology, Institute of Papermaking and Printing, Fibrous Papermaking Pulps Technology Division, ul. Wolczanska 223, 90-924 Łódź, Poland
Bibliografia
  • 1. Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008; 37: 123-150.
  • 2. Subbiah S, Venkatesan S, Ming-Chung T, Yen-Ho Ch. On the chemical stability of ionic liquids. Molecules 2009; 14:3780-3813.
  • 3. Ebner G, Schiehser S, Potthast A, Rosenau T. Side reaction of cellulose with common 1-alkyl-3-methylimidazoliumbased ionic liquids. Tetrahedron Lett. 2008; 49: 7322-7324.
  • 4. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, Highly Conductive AmbientTemperature Molten Salts. Inorg Chem. 1996; 35: 1168-1178.
  • 5. McEwen AB, Ngo HL, LeCompte H, Goldman JL. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc. 1999; 146: 1687- 1695.
  • 6. Holbrey JD, Seddon KR. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates: ionic liquids and ionic liquid crystals. J Chem Soc. Dalton Trans. 1999; 2133–2139.
  • 7. Ngo HL, Le Compte H, Hargens L, McEwen AB. Thermal properties of imidazolium ionic liquids. Thermochim Acta. 2000; 357–358: 97-102.
  • 8. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chem. 2001; 3: 156-164.
  • 9. Van Valkenburg ME, Vaughn RL, Williams M, Wilkes JS. Ionic liquid heat transfer fluids, 15th Symposium of Thermophysical Properties; 2003 Jun 22-27; Boulder, CO.
  • 10. Pinkert A, Marsh KN, Pang S, Staiger MP. Ionic Liquids and their interaction with cellulose. Chem Rev. 2009; 109:6712-6728.
  • 11. Endres F, Zein El Abedin S. Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Physics 2006; 8:2101-2116.
  • 12. Swatloski RP, Spear SK, Holbrey JD, Rogers SD. Dissolution of cellulose with ionic liquids. J Am Chem Soc. 2002; 124: 4974-4975.
  • 13. Heinze T, Liebert T. Unconventional methods in cellulose functionalization. Progress Polym Sci. 2001; 26: 689-1762.
  • 14. Heinze T, Koschella A. Solvents applied in the field of cellulose chemistry – a mini review. Polímeros: Ciência e Tecnologia 2005; 15:84-90.
  • 15. Fischer S, Leipner H, Thümmler K, Brendler E, Peters J. Inorganic molten salts as solvents for cellulose. Cellulose 2003; 10:227-236.
  • 16. Huddleston JG, Visser AE, Reichert VM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001; 3:156-164.
  • 17. Hermanutz F, Gähr F, Uerdingen E, Meister F, Kosan B. New Developments in Dissolving and Processing of Cellulose in Ionic Liquids. Macromol Symp. 2008; 262: 23-27.
  • 18. Zhu S, Wu Y, Chen O, et al. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 2006; 8: 325-327.
  • 19. Kuzmina O, Sashina E, Troshenkowa S, Wawro D. Dissolved state of cellulose in ionic liquids – the impact of water. FIBRES & TEXTILES in Eastern Europe 2010, 18, 3 (80): 32-37.
  • 20. Wawro D, Hummel M, Michud A, Sixta H. Strong cellulosic film cast from ionic liquid solutions. FIBRES & TEXTILES in Eastern Europe 2014; 22, 3(105): 35-42.
  • 21. Kilpeläinen S, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulous DS. Dissolution of wood in ionic liquids. J Agric Food Chem. 2007; 55: 9141-9148.
  • 22. Han S, Li J, Zhu S, et al. Potential applications of ionic liquids in wood related industries. BioResources 2009; 4: 825- 834.
  • 23. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC. High-throughput for ionic liquids dissolving (lingo)-cellulose. Bioresource Technol. 2009; 100:2580-2587.
  • 24. Fort DA, Remsing RC, Swatloski RP, Moyna G, Rogers RD. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazoulim chloride. Green Chem. 2007; 9: 63-69.
  • 25. Sun N, Rahman M, Quin Y, Maxim ML, Rodriquez H, Rogers RD. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolioum acetate. Green Chem. 2009; 11: 646-655.
  • 26. Surma-Ślusarska B, Danielewicz D. Solubility of various types of cellulose in ionic liquids. Przegl Papiern. 2012; 68: 43-48 (in Polish).
  • 27. Surma-Ślusarska B, Danielewicz D, Kaleta M. Comparison of properties of various types of cellulose before and after regeneration from ionic liquids. Przegl Papiern. 2012; 68: 99-103 (in Polish).
  • 28. Holnglu X, Wielun S. Wood liquefaction by ionic liquids. Holtzforshung 2006; 60: 509-512.
  • 29. Feng L, Chen Z. Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq. 2008; 142:1-5.
  • 30. Heintze T, Dorn S, Schöbitz M, Liebert T, Köhler S, Meister F. Interaction of ionic liquids with polysaccharides – 2: Cellulose. Macromol Symp. 2008; 262:8-22.
  • 31. Miechell AJ. Hydrogen bonding in lignins and in related alcohols and phenols. Cell Chem Technol. 1982; 16: 87-101.
  • 32. Kosmulski M, Gustafsson J, Rosenholm JB. Thermal stability of low temperature ionic liquids revisited. Thermochim Acta. 2004; 412: 47-53.
  • 33. Almeida HF, Passos H, Lopes-da-Silva JA, Fernandes AM, Freire MG, Coutinho AP. Thermophysical properties of five acetate-based ionic liquids. J Chem Eng. 2012; 57: 3005-3013.
  • 34. Silverstein RM, Webster FX, Kiemle DJ. Spectroscopic methods of identification of organic compounds. Warszawa: Wydawnictwo Naukowe PWN; 2007.
  • 35. Ghosh A, Mi Y. Metal ion complexes and their relationship to pulp brightness. J Pulp Paper Sci. 1998; 24: 26-30.
  • 36. Imsgard F, Falkehag SI, Kringstad KP. On possible chromophoric structures in spruce wood. TAPPI J. 1971; 54: 1680- 1694.
  • 37. Gosselink RJA, Abächerli A, Semke H, et al. Analytical protocol for characterization of sulphur-free lignin. Ind. Crops Prod. 2004; 19: 271-281.
  • 38. Tejado A, Peňa Labidi J, Echeverria JM, Mondragon I. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresource Technol. 2007; 98: 1655-1663.
  • 39. Liang CY, Bassett KH, McGinnes EA, Marchessault RH. Infrared spectra of crystalline polysaccharides. VII. Thin wood sections. TAPPI J. 1960; 43: 1017- 1021.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00513848-e794-47b4-b41e-186c708ae704
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.