PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected methods for improving operating conditions of three-phase systems working in the presence of current and voltage deformation – part I

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper includes a summary and a background of long-time research conducted by a research team in the Institute of Electrical Engineering and Computer Science at SilesianUniversity of Technology. The researchwork has principally been related to selected problems in the field of analysis and synthesis of systems aimed at symmetrisation and improvement of some power quality parameters. This paper constitutes a first part of the report on the research. It has been devoted to effective elimination of higher harmonics and reactive power compensation by means of parallel active power filters. The other problem discussed in this paper is related to this issue and it is very important from the economic point of view; it addresses optimal sizing and placement of active power filters in investigated power networks.
Rocznik
Strony
591–--602
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wz.
Twórcy
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology ul. Akademicka 10, 44-100 Gliwice,
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology ul. Akademicka 10, 44-100 Gliwice,
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology ul. Akademicka 10, 44-100 Gliwice,
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology ul. Akademicka 10, 44-100 Gliwice,
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology ul. Akademicka 10, 44-100 Gliwice,
Bibliografia
  • [1] Afonso J., Couto C., Martins J., Active filters with control based on the p-q theory, IEEE Industrial Electronics Newsletter, vol. 47, no. 3, pp. 5–10 (2000).
  • [2] Akagi H., Kanazawa Y., Nabae A., Instantaneous reactive power compensators comprising switching devices without energy storage components, IEEE Transactions on Industry Applications, vol. 1A-20, no. 3, pp. 625–630 (1984).
  • [3] Akagi H., Watanabe E.H., Aredes M., Instantaneous power theory and applications to power conditioning, John Wiley & Sons Inc., USA (2007).
  • [4] Bhattacharya S., Divan D.M., Banerjee B., Synchronous frame harmonic isolator using active series filter, Proceedings of EPE, Firenze, Italy, vol. 3, pp. 3030–3035 (1991).
  • [5] Fukuda S., Furukawa Y., Kamiya H., An adaptive current control technique for active filters, Proceedings of Power Conversion Conference, Osaka, Japan, pp. 789–794 (2002).
  • [6] Gawlik W.H.M., Time domain modelling of active filters for harmonic compensation, IEEE Bologna Power Tech Conference, Proceedings of IEEE Bologna Power Tech, Bologna, Italy (2003).
  • [7] Mikołajuk K., Toboła A., Average time–varying models of active power filters, Przegl˛ad Elektrotechniczny, vol. 1, pp. 53–55 (2010).
  • [8] Watanabae E.H., Aredes M., Compensation of non-periodic currents using the instantaneous power theory, IEEE PES Summer Meeting, Seattle, USA, pp. 994–998 (2000).
  • [9] Woo-Cheol L., Taeck-Kie L., Dong-Seok H., A three-phase parallel active power filter operating with PCC voltage compensation with consideration for an unbalanced load, IEEE Transaction on Power Electronics, vol. 17, no. 5, pp. 807–814 (2002).
  • [10] Sozański K., Three phase active power filter with selective harmonics elimination, Archives of Electrical Engineering, vol. 65, no. 1, pp. 33–44 (2016).
  • [11] Maciążek M., Power theories applications to control active compensators, in Benysek G., Pasko M.: Power Theories for Improved Power Quality. Power Systems Series, UK, pp. 49–116 (2012).
  • [12] Buła D., Maciążek M., Pasko M., Optimization of time delays in active power filter control algorithm, Proceedings of VIII Computional Probelms of Electrical Engineering CPEE,Wilkasy, Poland, Przegląd Elektrotechniczny - Konferencje, vol. 2, pp. 102–105 (2007).
  • [13] Pasko M., Maciążek M., Buła D., Signal filters influence in control algorithms of active power filters, Przegląd Elektrotechniczny (in Polish), vol. 84, no. 6, pp. 101–104 (2008).
  • [14] Maciążek M., Pasko M., Predictive control algorithms of active power filter, Przegląd Elektrotechniczny (in Polish), vol. 86, no. 4, pp. 154–157 (2010).
  • [15] Wang Yan-Song, Shen Hua, Liu Xue-min, Liu Jun, Gou Song-bo, Optimal allocation of the active filters based on the TABU algorithm in distribution network, Proceedings of International Conference on Electrical and Control Engineering ICECE, Wuhan, China, pp. 1418–1421 (2010).
  • [16] Gehrke C.S., Lima A.M.N., Oliveira A.C., Evaluating APLCs placement in a power system based on real-time simulation, Proceedings of IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA, pp. 2011–2016 (2012).
  • [17] Moradifar A., Soleymanpour H.R., A fuzzy based solution for allocation and sizing of multiple active power filters, Journal of Power Electronics, vol. 12, no. 5, pp. 830–841 (2012).
  • [18] Ziari I., Jalilian A., Optimal placement and sizing of multiple APLCs using a modified discrete PSO, International Journal of Electrical Power and Energy Systems, vol. 43, no. 1, pp. 630–639 (2012).
  • [19] Kennedy K., Lightbody G., Yacamini R., Murray M., Kennedy J., Online control of an APLC for network-wide harmonic reduction, IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 432–439 (2006).
  • [20] IEEE Std 519-1992 IEEE Recommended practices and requirements for harmonic control in electric power systems.
  • [21] Hong Y.-Y., Chang Y.-K., Determination of locations and sizes for active power line conditioners to reduce harmonics in power systems, IEEE Transactions on Power Delivery, vol. 11, no. 3, pp. 1610–1617 (1996).
  • [22] Keypour R., Seifi H., Yazdian-Varjani A., Genetic based algorithm for active power filter allocation and sizing, Electric Power Systems Research, vol. 71, pp. 41–49 (2004).
  • [23] Ramos D.F.U., Cortes J., Torres H., Gallego L.E., Delgadillo A., Buitrago L., Implementation of genetic algorithms in ATP for optimal allocation and sizing of active power line conditioners, Proceedings of IEEE/PES Transmission & Distribution Conference and Exposition, Caracas, Venezuela, pp. 1–5 (2006).
  • [24] Dehghani N., Ziari I., Optimal allocation of APLCs using genetic algorithm, Proceedings of 43rd International Universities Power Engineering Conference UPEC, Padova, Italy, pp. 1–4 (2008).
  • [25] Gehrke C.S., Lima A.M.N., Oliveira A.C., Cooperative control for active power compensators allocated in distributed networks, Proceedings of IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA, pp. 2764–2768 (2012).
  • [26] He N., Xu D., Huang L., The application of particle swarm optimization to passive and hybrid active power filter design, IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 28412851 (2009).
  • [27] Ziari I., Jalilian A., A new approach for allocation and sizing of multiple active power-line conditioners, IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 1026–1035 (2010).
  • [28] Yue H., Li G., Zhou M.,Wang K.,Wang J., Multi-objective optimal power filter planning in distribution network based on fast nondominated sorting genetic algorithms, Proceedings of 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies DRPT,Weihai, China, pp. 234–240 (2011).
  • [29] Rafiei S.M.R., Kordi M.H., Griva G., Yassami H., Multi-objective optimization based optimal compensation strategies study for power quality enhancement under distorted voltages, Proceedings of IEEE International Symposium on Industrial Electronics, Bari, Italy, pp. 3284–3291 (2010).
  • [30] Carpinelli G., Proto D., Russo A., Optimal planning of active power filters in a distribution system using trade-off/risk method, IEEE Transactions on Power Delivery, vol. 32, no. 2, pp. 841-851 (2017).
  • [31] González-Romera E.,Romero-Cadaval E.,Ruíz-Arranz S., Milanés-Montero M., Overall power quality correction in distribution networks by active power filters. Optimization of location and strategy, Przegląd Elektrotechniczny, vol. 88, no. 1 A, pp. 51–55 (2012).
  • [32] Moradifar A., Akbari Foroud A., Cost-effecive optimal allocation and sizing of active power filters using a new fuzzy-MABICA method, IETE Journal of Research, vol. 62, no. 3, pp. 307–322 (2015).
  • [33] Moradifar A., Akbari Foroud A., A hybrid fuzzy DIAICA approach for cost-effective placement and sizing of APFs, IETE Technical Review, vol. 34, no. 5, pp. 579–589 (2017).
  • [34] Buła D., Grabowski D., Lewandowski M., Maciążek M., Pasko M., Piwowar A., Walczak J., Analysis and optimization of active power filter placement, Monograph no. 449 (in Polish), Publishing House of the Silesian University of Technology, Gliwice (2013).
  • [35] Grabowski D., Maciążek M., Pasko M., Sizing of active power filters using some optimization strategies, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32, no. 4, pp. 1326–1336 (2013).
  • [36] Maciążek M., Grabowski D., Pasko M., Active power filters – optimization of sizing and placement, Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 61, no. 4, pp. 847–853 (2013).
  • [37] Maciążek M., Grabowski D., Pasko M., Genetic and combinatorial algorithms for optimal sizing and placement of active power filters, International Journal of Applied Mathematics and Computer Science, vol. 25, no. 2, pp. 269–279 (2015).
  • [38] Maciążek M., Grabowski D., Pasko M., Lewandowski M., Compensation based on active power filters – the cost minimization, Applied Mathematics and Computation, vol. 267, pp. 648–654 (2015).
  • [39] http://web.ecs.baylor.edu/faculty/grady/ (Grady W.M., PCFLO and HAPS. Understanding Power System Harmonics), accessed January 2018.
  • [40] Maciążek M., Pasko M., Optimum allocation of active power filters in large supply systems, Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 64, no. 1, pp. 37–44 (2016)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-004698f9-86bc-4c63-b2a8-aaaa0008e7f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.