Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study investigates the behaviour of an electrical interface incorporated in a MR damper-based vibration reduction system powered with energy recovered from vibration. The interface, comprising the R, L and C elements, is connected in between the coil in an electromagnetic electric generator and the control coil in the MR damper and its function is to convert the output voltage from the generator. The interface model was formulated and computer simulations were performed to find out how the parameters of the interface should influence the frequency responses of the vibration reduction system.
Czasopismo
Rocznik
Tom
Strony
165--172
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
- Mechanical Engineering and Robotics, Department of Process Control, University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Mechanical Engineering and Robotics, Department of Process Control, University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- 1. Cho S. W., Jung H. J., Lee I. W. (2005), Smart passive system based on a magnetorheological damper, Smart Materials and Structures, 14, 707-714.
- 2. Cho S. W., Jung H. J., Lee I. W. (2007a), Feasibility study of smart passive control system equipped with electromagnetic induction device, Smart Materials and Structures, 16, 2323-2329.
- 3. Choi K. M., Jung H. J., Lee I. W., Cho S. W. (2007b), Feasibility study of an MR damper-based smart passive control system employing an electromagnetic induction device, Smart Materials and Structures, 16, 2323¬–9.
- 4. Choi Y. T., Werely N. M. (2009), Self-powered magnetorheological dampers, Journal of Vibration Acoustics, 131, 44–50.
- 5. Guo S., Yang S., Pan C. (2006), Dynamic modeling of magnetorheological damper behaviors, Journal of Intelligent Material Systems and Structures, 17, 1, 3-14.
- 6. Kwok N.M, Ha Q.P., Nguyen T.H., Li J., Samali B. (2006), A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm, Sensors and Actuators A, 132, 441-451.
- 7. Rosół M., Sapiński B., Jastrzębski Ł. (2010), Laboratory testing of signal conditioning systems in an electromagnetic generator to power-supply an MR damper, Measurement, Automation, Monitoring, 56(10), 1228-1233 (in Polish).
- 8. Sapinski B. (2008), An experimental electromagnetic induction device for a magnetorheological damper, Journal of Theoretical and Applied Mechanics, 46(4), 933-947.
- 9. Sapiński B. (2011), Experimental study of a self-powered and sensing MR-damper-based vibration control system, Smart Materials and Structures, 20, 105007.
- 10. Sapiński B. (2014), Energy-harvesting linear MR damper: prototyping and testing, Smart material and Structures, 23, 035021.
- 11. Sapiński B., Jastrzębski Ł., Węgrzynowski M. (2011), Modelling of a self-powered vibration reduction system, Modelling in Engineering, 10(41), 353-362 (in Polish).
- 12. Sapiński B., Rosół M., Węgrzynowski M. (2016), Evaluation of an energy harvesting mr damper-based vibration reduction systemstem, Journal of Theoretical and Applied Mechanics, 54(2), 333-344.
- 13. Snamina J., Sapinski B. (2011), Energy balance in self-powered MR damper-based vibration reduction system, Bulletin of the Polish Academy of Sciences Technical Sciences, 59(1), 75−80.
- 14. Wang D. H., Bai X. X., Liao W H. (2009), Principle, design and modeling of an integrated relative displacement magnetorheological damper based on electromagnetic induction, Smart Materials and Structures, 18, 095025.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0045d94a-0961-441f-ae01-f3aeefe142c9