PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of maximum principle to optimization of production and storage costs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A problem of optimization for production and storge costs is studied. The problem consists in manufacture of n types of products, with some given restrictions, so that the total production and storage costs are minimal. The mathematical model is built using the framework of driftless control affine systems. Controllability is studied using Lie geometric methods and the optimal solution is obtained with Pontryagin Maximum Principle. It is proved that the economical system is not controllable, in the sense that we can only produce a certain quantity of products. Finally, some numerical examples are given with graphical representation.
Rocznik
Strony
865--881
Opis fizyczny
Bibliogr. 30 poz., rys., wzory
Twórcy
  • University of Craiova, Faculty of Economics and Business Administration Department of Statistics and Economic Informatics, Al. I. Cuza st., No. 13, Craiova 200585, Romania
  • University of Craiova, Faculty of Economics and Business Administration Department of Statistics and Economic Informatics, Al. I. Cuza st., No. 13, Craiova 200585, Romania
Bibliografia
  • [1] A. Agrachev and Y.L. Sachkov: Control theory from the geometric viewpoint. Encyclopedia of Mathematical Sciences, Control Theory and Optimization, 87, Springer, 2004.
  • [2] K.J. Arrow: Applications of control theory of economic growth. Mathematics of Decision Sciences, 2, AMS, 1968.
  • [3] S. Axsater: Control theory concepts in production and inventory control. International Journal of Systems Science, 16(2), (1985), 161-169, DOI: 10.1080/00207728508926662.
  • [4] R. Bellmann: Adaptive control processes: a guided tour. Princeton Univ. Press: Princeton, 1972.
  • [5] S. Benjaafar, J.P. Gayon, and S. Tepe: Optimal control of a production-inventory system with customer impatience. Operations Research Letters, 38(4), (2010), 267-272, DOI: 10.1016/j.orl.2010.03.008.
  • [6] R. Brocket: Lie algebras and Lie groups in control theory. In: Mayne D.Q., Brockett R.W. (eds) Geometric Methods in System Theory. NATO Advanced Study Institutes Series (Series C - Mathematical and Physical Sciences), vol. 3. Springer, Dordrecht, 1973, 43-82, DOI: 10.1007/978-94-010-2675-8_2.
  • [7] M. Caputo: Foundations of Dynamic Economic Analysis: Optimal Control Theory and Applications. Cambridge Univ. Press, 2005, DOI: 10.1017/CBO9780511806827.
  • [8] M. Danahe, A. Chelbi, and N. Rezg: Optimal production plan for a multiproducts manufacturing system with production rate dependent failure rate. International Journal of Production Research, 50(13), (2012), 3517-3528, DOI: 10.1080/00207543.2012.671585.
  • [9] G. Feichtinger and R. Hartl: Optimal pricing and production in an inventory model. European Journal of Operational Research, 19 (1985), 45-56, DOI: 10.1016/0377-2217(85)90307-8.
  • [10] C. Gaimon: Simultaneous and dynamic price, production, inventory and capacity decisions. European Journal of Operational Research, 35 (1988), 426-441.
  • [11] J.P. Gayon, S. Vercraene, and S.D. Flapper: Optimal control of a production-inventory system with product returns and two disposal options. European Journal of Operational Research, 262(2), (2017), 499-508, DOI: 10.1016/j.ejor.2017.03.018.
  • [12] C. Hermosilla, R. Vinter, and H. Zidani: Hamilton-Jacobi-Bellman equations for optimal control processes with convex state constraints. Systems & Control Letters, 109 (2017), 30-36, DOI: 10.1016/j.sysconle.2017.09.004.
  • [13] V. Jurdjevic: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, 52, Cambridge Univ. Press, 1997, DOI: 10.1017/CBO9780511530036.
  • [14] M.I. Kamien and N.L. Schwartz: Dynamic optimization: The Calculus of Variations and Optimal Control in Economics and Management, 31 Elsevier, 1991.
  • [15] K. Kogan and E. Khmelnitsky: An optimal control model for continuous time production and setup scheduling. International Journal of Production Research, 34(3), (1996), 715-725.
  • [16] Y. Qiu, J. Qiao, and P. Pardalos: Optimal production, replenishment, delivery, routing and inventory management policies for products with perishable inventory. Omega-International Journal of Management Science, 82 (2019), 193-204, DOI: 10.1016/j.omega.2018.01.006.
  • [17] S.M. LaValle: Planning Algorithms. Cambridge University Press, 2006.
  • [18] M. Li and Z. Wang: An integrated replenishment and production control policy under inventory inaccuracy and time-delay. Computers & Operations Research, 88 (2017), 137-149, DOI: 10.1016/j.cor.2017.06.014.
  • [19] B. Li and A. Arreola-Risa: Optimizing a production-inventory system under a cost target. Computers & Operations Research, 123 (2020), 105015, DOI: 10.1016/j.cor.2020.105015.
  • [20] M. Ortega and L. Lin: Control theory applications to the production-inventory problem: a review. International Journal of Production Research, 42(11), (2004), 2303-2322, DOI: 10.1080/00207540410001666260.
  • [21] V. Pando and J. Sicilia: A new approach to maximize the profit/cost ratio in a stock-dependent demand inventory model. Computers & Operations Research, 120 (2020), 104940, DOI: 10.1016/j.cor.2020.104940.
  • [22] L. Popescu: Applications of driftles control affine sytems to a problem of inventory and production. Studies in Informatics and Control, 28(1), (2019), 25-34, DOI: 10.24846/v28i1y201903.
  • [23] L. Popescu: Applications of optimal control to production planning. Information Technology and Control, 49(1), (2020), 89-99, DOI: 10.5755/j01.itc.49.1.23891.
  • [24] L. Popescu, D. Militaru, and O. Mituca: Optimal control applications in the study of production management. International Journal of Computers, Communications & Control, 15(2), (2020), 3859, DOI: 10.15837/ijccc.2020.2.3859.
  • [25] A. Seierstad and K. Sydsater: Optimal Control Theory with Economic Applications. North-Holland, Amsterdam, NL, 1987.
  • [26] S.P. Sethi: Applications of the Maximum Principle to Production and Inventory Problems. Proceedings Third International Symposium on Inventories, Budapest, Aug. 27-31, (1984), 753-756.
  • [27] S.P. Sethi and G.L.Thompson: Optimal Control Theory: Applications to Management Science and Economics. Springer, New York, 2000.
  • [28] J.D. Schwartz and D.E. Rivera: A process control approach to tactical inventory management in production-inventory systems. International Journal of Production Economics, 125(1), (2010), 111-124, DOI: 10.1016/j.ijpe.2010.01.011.
  • [29] D.R. Towill, G.N. Evans, and P. Cheema: Analysis and design of an adaptive minimum reasonable inventory control system. Production Planning & Control, 8(6), (1997), 545-557, DOI: 10.1080/095372897234885.
  • [30] T.A. Weber, Optimal control theory with applications in economics. MIT Press, 2011.
Uwagi
1. This work was supported by the grant POCU380/6/13/123990, co-financed by the European Social Fund within the Sectorial Operational Program Human Capital 2014-2020.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0044fd52-181a-4ef0-a4fb-204ddef6f056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.