PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser cutting of composite sandwich structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes a method of cutting housings of refrigerating appliances with a CO2 laser, as a stage of their disassembly during recycling. The housings are made of laminar “sandwich” composites with low susceptibility to be processed after withdrawal from use. The problems of their utilization result from difficulties to separate the three materials making individual layers of the composite, i.e. metal, foamed polyurethane and a thermoplastic material. In the suggested method of cutting with laser beam, utilized are significant differences between melting points and flash points of these materials. Implementation of this method makes it possible to recover from waste housings sections of any shape, which could be reused with regard to their maintained insulating and mechanical properties (rigidity, compression strength).
Rocznik
Strony
545--554
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Centre for Advanced Manufacturing Technologies/Fraunhofer Project Center, Faculty of Mechanical Engineering, Wrocław University of Technology, ul. Łukasiewicza 5, 50-371 Wrocław, Poland
autor
  • Centre for Advanced Manufacturing Technologies/Fraunhofer Project Center, Faculty of Mechanical Engineering, Wrocław University of Technology, ul. Łukasiewicza 5, 50-371 Wrocław, Poland
autor
  • Centre for Advanced Manufacturing Technologies/Fraunhofer Project Center, Faculty of Mechanical Engineering, Wrocław University of Technology, ul. Łukasiewicza 5, 50-371 Wrocław, Poland
Bibliografia
  • [1] Y. Kondo, K. Hirai, R. Kawamoto, F. Obata, A discussion on the resource circulation strategy of the refrigerator, Resources, Conservation and Recycling 33 (2001) 153–165.
  • [2] J. Deng, X. Wen, Y. Zhao, Evaluating the treatment of E-waste – a case study of discarded refrigerators, Journal of China University of Mining & Technology 18 (2008) 0454–0458.
  • [3] Z. Florence, T. Price, Domestic-fridge recycling in Wales: mountains or mole hills? Applied Energistics 80 (2005) 125–140.
  • [4] G. Marsh, Composite Cutting Considerations, REINFORCEDplastics, 2002, November, pp. 32–36.
  • [5] D. Krajcarz, Comparison metal water jet cutting with laser and plasma cutting, Procedia Engineering 69 (2014) 838–843.
  • [6] S. Krajewski, J. Nowacki, Structure of AlSi–SiC composite foams surface formed by mechanical and thermal cutting, Applied Surface Science 327 (2015) 523–531.
  • [7] D. Herzog, M. Schmidt-Lehr, M. Oberlander, M. Canisius, M. Radek, C. Emmelmann, Laser cutting of carbon fibre reinforced plastics of high thickness, Materials & Design 92 (2016) 742–749.
  • [8] J. Walter, M. Hustedt, R. Staehr, S. Kaierle, P. Jaeschke, O. Suttmann, L. Overmeyer, Laser cutting of carbon fiber reinforced plastics – investigation of hazardous process emissions, Physics Procedia 56 (2014) 1153–1164.
  • [9] G. Villalba, M. Segarra, J.M. Chimenos, F. Espiell, Using the recyclability index of materials as a tool for design for disassembly, Ecological Economics 50 (2004) 195–200.
  • [10] M. Nifukua, H. Tsujitab, K. Fujinob, K. Takaichib, C. Barrea, E. Payaa, M. Hatoria, S. Fujiwaraa, S. Horiguchia, I. Sochet, Ignitability assessment of shredder dusts of refrigerator and the prevention of the dust explosion, Journal of Loss Prevention in the Process Industries 19 (2006) 181–186.
  • [11] American Society for Metals. ASM Handbooks Online. [Online] http://products.asminternational.org/.
  • [12] Matweb Material Property Data. [Online] http://www. matweb.com/.
  • [13] I. Yadroitsev, Selective Laser Melting, LAP Lambert Academic Publishing AG & Co. KG, Saarb, 2009, pp. 52–61.
  • [14] J.D. Majumdar, I. Manna, Laser material processing, International Materials Reviews 56 (2011) 341–388.
  • [15] J. Wang, W.C.K. Wong, CO2 laser cutting of metallic coated sheet steels, Journal of Materials Processing Technology 95 (1999) 164–168.
  • [16] S. Engelmann, Advanced Thermoforming: Methods, Machines and Materials, Applications and Automation, John Wiley & Sons, Inc., Hoboken, 2012.
  • [17] D. Askeland, P. Fulay, W. Wright, The Science and Engineering of Materials, Ed. Chapman & Hall/Cengage Learning, Inc., London/Stamford, 2010.
  • [18] R. Zevenhoven, Treatment and disposal of polyurethane wastes: options for recovery and recycling. Helsinki: Report TKK-ENY-19, 2004.
  • [19] C. Branca, C. Di Blasi, A. Casu, V. Morone, C. Costa, Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion, Thermochimica Acta 399 (2003) 127–137.
  • [20] H. Macchi-Tejedaa, H. Opatovàb, D. Leducqa, Contribution to the gas chromatographic analysis for both refrigerants composition and cell gas in insulating foams – Part I: Method, International Journal of Refrigeration 30 (2) (2007) 329–337.
  • [21] E. Granryd, Hydrocarbons as refrigerants – an overview, International Journal of Refrigeration 24 (2001) 15–24.
  • [22] K. Wilkes, D. Yarbrough, G. Nelson, Aging of polyurethane foam insulation in simulated refrigerator panels – four-year results with third-generation blowing agents, Journal of Cellular Plastics 38 (2002) 317–339.
  • [23] J.C. Ion, Laser Processing of Engineering Materials, Elsevier Butterworth-Heinemann, Oxford, 2005.
  • [24] A. Slocombe, L. Li, Laser ablation machining of metal/ polymer composite materials, Applied Surface Science 154– 155 (2000) 617–621.
  • [25] C.L. Caristan, Laser Cutting Guide for Manufacturing, Society of Manufacturing Engineers, Dearborn, Michigan, 2004.
  • [26] J.P. Davim, M. Barricas, M. Conceição, C. Oliveira, Some experimental studies on CO2 laser cutting quality of polymeric materials, Journal of Materials Processing Technology 198 (1–3) (2008) 99–104.
  • [27] A. Riveiro, F. Quintero, F. Luskuiños, R. Comesaña, J. Del Val, J. Pou, The role of the assist gas nature in laser cutting of aluminium alloys, Physics Procedia 12 (2011) 548–554.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-003fc8df-4602-411b-a6b7-614116a5a2ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.