PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of variability of payback time of investments in various types of RES micro-installations for enterprises purchasing electricity and gas at the TGE on micro-installation scale

Identyfikatory
Warianty tytułu
PL
Analiza zmienności czasu zwrotu inwestycji w różnego typu mikroinstalacje OZE dla przedsiębiorstw dokonujących zakupu energii elektrycznej i gazu na TGE w skali mikroinstalacji
Języki publikacji
EN
Abstrakty
EN
In the years 2021-2023, Poland and Europe experienced unprecedented increases in energy prices in the last dozen or so years, leading to shifts in the economic perception of renewable energy sources. PV installations have achieved a simple payback time (SPBT) of less than 10 years, also prompting a consideration installation solar thermal collectors. The study analyzed selected micro-scale renewable energy installations (photovoltaic, wind turbine, solar thermal collector) and estimated simple payback times for individual potential investments in these installations. The analyses revealed that PV installations currently have the shortest payback time, but this trend might evolve in the future due to the lowest daily energy prices coinciding with the highest energy production values from PV installations. In the years 2016-2023, the lowest SPBT value was attained for photovoltaics. However, in 2022, a similar SPBT value was achieved for solar thermal installations, replacing natural gas sources. PV and solar thermal technologies are also viable for micro-installations, with lower associated risks related to productivity, such as specific yields influenced by geographical and weather conditions, as well as terrain and landscape features, especially for small turbine turbines.
PL
W latach 2021 — 2023 W Polsce i W Europie wystąpiły niespotykane W ostatnich kilkunastu latach wzrosty cen energii, które spowodowały zmiany W postrzeganiu ekonomicznym źródeł typu OZE. Instalacje PV osiągnęły prosty czas zwrotu (SPBT) poniżej 10 lat, a dla solar thermal wrócił czas do rozważania tego typu urządzeń. W pracy przeanalizowano wybrane instalacje OZE (photovoltaic, wind turbine, solar thermal collector) W skali mikro oraz oszacowane proste czasy zwrotu dla poszczególnych potencjalnych inwestycji W instalacje. W wyniku analiz instalacje PV mają najkrótszy czas zwrotu, jednak W przyszłości może się to zmienić ze względu na trend W zakresie występowania najniższych cen energii W skali doby przy najwyższych wartościach produkcji energii z instalacji PV. W latach 2016 — 2023 najniższa wartość SPBT osiągalna była dla fotowoltaiki, jednak W 2022 podobna wartość SPBT została osiągnięta dla instalacji solar thermal zastępującej źródła natural gas. PV i solar thermal to także technologie, których zastosowanie W skali mikroinstalacji nie Wiąże się z dużym ryzykiem związanym z produktywnością (specific yields) np. spowodowanych warunkami geograficznymi i pogodowymi, a także ukształtowaniem terenu i kraj obrazu (szczególnie dla małych Wind turbines).
Słowa kluczowe
EN
PL
cena energii   OZE   SPBT  
Wydawca
Czasopismo
Rocznik
Tom
Strony
81--88
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Akademia Górniczo-Hutnicza im. Stanisława Staszica
  • Akademia Górniczo-Hutnicza im. Stanisława Staszica
autor
  • Politechnika Krakowska
Bibliografia
  • [1] ARE. (2023). Statistical information about energy market 8/2023.
  • [2] Biawar. (2015). Hevelius wunder. http://www.biawar.com.pl/systemy-solarne/hevelius—wrmder-kolektory- plaskie/hevelius—cls—3-bz
  • [3] Biawar. (2019). Vertical storage tanks. https://www.biawar.com.pl/en/produkt/mega—for-solar-systems-220- 10001/
  • [4] Cabacaba, N., & Abbasoglu, S. (2017). Evaluation of Wind—Solar Hybrid System for a Household in Northern Cyprus (pp. 3 13-321). https://doi.org/10.1007/978—3-319-45659-1_34
  • [5] Chen, W.-L., Li, Z.-C., Lin, Y.-S., & Huang, B.-X. (2011). Control and performance identification for small vertical axis wind turbines. https://doi.org/10.1049/cp.2011.0210
  • [6] Chwieduk, D. (2010). Solar energy use for thermal application in Poland. Polish Journal of Environmental Studies, 19(3), 473—477.
  • [7] Dyczko, A., Kamiński, P., Stecuła, K., Prostański, D., Kopacz, M., & Kowol, D. (2021). Thermal and mechanical energy storage as a chance for energy transformation in Poland. Polityka Energetyczna — Energy Policy Journal, 24(3), 43—60. https://doi.0rg/10.33223/epj/14l 867
  • [8] Dzikué, M., Goraczkowska, J., Piwowar, A., Dzikuć, M., Smoleński, R., & Kułyk, P. (2021). The analysis of the ? innovative potential of the energy sector and low-carbon development: A case study for Poland. Energy Strategy & Reviews, 38, 100769. https://doi.org/https://doi.org/10.1016/j.esr.2021.100769 .
  • [9] Dzikuć, M., Piwowar, A., & Dzikuć, M. (2022). The importance and potential of photovoltaics in the context of low-carbon development in Poland. Energy Storage and Saving, I (3), 162—165. https://doi.org/https://doi.org/10. 1016/j.enss.2022.07.001
  • [10] European Centre for Medium-Range Weather Forecasts (ECMWF). (2019). ERA5 . Reanalysis Datasets. https://doi.org/10.24381/cds.adbb2d47
  • [11] Filipowicz, M., Musilek, P., & Gulkowski, S. (2022). Specific Yield Analysis of the Rooftop PV Systems Located in South-Eastern Poland. Energies 2022, Vol. 15, Page 3666, 15(10), 3666 https://doi.org/10.3390/EN15103666
  • [12] Gulkowski, S. (2022). Specific Yield Analysis of the Rooftop PV Systems Located in South-Eastem Poland. Energies, I5(10). https://doi.org/10.3390/enl5103666
  • [13] iskra. (2020). AT5-1 Advanced Wind Turbine. http:/lwww.energygridsolutions.com/pdf/iskra data sheetpdf
  • [14] Kaczrnarzewski, S., Matuszewska, D., & Sołtysik, M. (2022). Analysis of Selected Service Industries in Terms of the Use of Photovoltaics before and during the COVID-19 Pandemic. Energies, 15(1). https://doi.org/10.3390/en15010188
  • [15] Kaczmarzewski, S., Olczak, P., & Sołtysik, M. (2021). The Impact of Electricity Consumption Profile in Underground Mines to Cooperate with RES. Energies, 14(18). https://doi.org/10.3390/en14185775
  • [16] Kaszyński, P., Komorowska, A., & Kamiński, J. (2023). Revisiting Market Power in the Polish Power System. Energies, 1 6(13). https://doi.org/10.3390/en16134856
  • [17] Komorowska, A., Benalcazar, P., & Kamiński, J. (2023). Evaluating the competitiveness and uncertainty of offshore wind-to-hydrogen production: A case study of Poland. International Journal of Hydrogen Energy. https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.01.015
  • [18] Komorowska, A., & Gawlik, L. (2018). Management of surplus electricity production from unstable renewable energy sources using Power to Gas technology. Polityka Energetyczna - Energy Policy Journal, 21 (No 4), 43— 64. https://doi.org/ 10.24425/124511
  • [19] Komorowska, A., Kaszyński, P., & Kamiński, J. (2023). Where does the capacity market money go? Lessons learned from Poland. Energy Policy, 1 73, 113419. https://doi.org/https://doi.org/ 10.1016/j.enp01.2023.113419
  • [20] Kryzia, D., Olczak, P., Wrona, J., Kopacz, M., Kryzia, K., & Galica, D. (2019). Dampening Variations in Wind Power Generation Through Geographical Diversification. IOP Conference Series: Earth and Environmental Science, 214(1). https://doi.org/10.1088/1755-1315/214/1/012038
  • [21] Kulpa, J., Olczak, P., Surma, T., & Matuszewska, D. (2022). Comparison of Support Programs for the Development of Photovoltaics in Poland: My Electricity Program and the RES Auction System. Energies, 15(1), 121. https://doi.org/l0.3390/en15010121
  • [22] Kuta, M., Matuszewska, D., & Wójcik, T. M. (2016). The role of phase change materials for the sustainable energy. E3S Web of Conferences, 10, 00068. https://doi.org/10.105 l/e3sconf/20161000068
  • [23] Matuszewska, D., Kuta, M., & Górski, J. (2019). The environmental impact of renewable energy technologies shown in case of ORC-Based Geothermal Power Plant. IOP Conference Series: Earth and Environmental Science, 214, 012142. https://doi.org/10.1088/l755-1315/214/1/012142
  • [24] Matuszewska, D., Sztekler, K., & Gorski, J. (2014). An influence of low-stability region on dense gas phenomena and their peculiarities in the ORC fluids. AMTEC Web of Conferences, 18, 03005. _ https://doi.org/10.1051/matecconf/20141803005
  • [25] NFOSiGW. (2020). Mój Prąd. National Fund for Environmental Protection and Water Management. https://mojprad.gov.p1
  • [26] NIETO-DIAZ, BALDER, A. (2022). Increased lifetime of Organic Photovoltaics (OP Vs) and the impact of degradation, efi‘iciency and costs in the LCOE of Emerging PVs. Durham University.
  • [27] Olczak, P. (2020a). The comparison of solar installation heat gains and SHW simulation results - case study. Polityka Energetyczna, 23(3). https ://doi.org/1 0.33223/EPJ/1 2698 l
  • [28] Olczak, P. (2020b). The influence of excessive solar heat gains on heat loss in the hot water tank — case study. . Energy Policy Journal, 23(2), 91—104.
  • [29] Olczak, P. (2021). Temperature verification method of solar heat gains in installations with flat plate solar collectors — case study. Polityka Energetyczna — Energy Policy Journal, 24(1), 1 15—132. https://doi.org/10.33223/epj/133124
  • [30] Olczak, P. (2022). Magazynowanie energii elektrycznej w prosumenckich mikroinstalacjachfotowoltaicznych (E. .Mokrzycki, Ed.). IGSMiE PAN.
  • [31] Olczak, P., Olek, M., & Plewa, A. (2021). Analysis of cooperation of solar collectors With a geothermal source -a case study. Rynek Energii, 153(2).
  • [32]“ Olczak, P., & Surma, T. (2023). Energy Productivity Potential of Offshore Wind in Poland and Cooperation with Onshore Wind Farm. Applied Sciences, 13(7). https://doi.org/10.3390/app13074258
  • [33] Olczak, P., Żelazna, A., Matuszewska, D., & Olek, M. (2021). The “My Electricity” Program as One of the Ways to Reduce C02 Emissions in Poland. Energies, 14(22), 7679. https://doi.org/10.3390/en14227679
  • [34] Olczak, P., Żelazna, A., Stecuła, K., Matuszewska, D., & Lelek, Ł. (2022). Environmental and economic analyses of different size photovoltaic installation in Poland. Energy for Sustainable Development, 70, 160—169. _https://d0i.org/10.1016/j.esd.2022.07.016
  • [35] Piwowar, A., Dzikuć, M., & Dzikuć, M. (2023). The potential of wind energy development in Poland in the context of legal and economic changes. Acta Polytechnica Hungarica, 20(10), 145—156.
  • [36] PSE. (2023). Dane Systemowe. https://www.pse.pl/dane-systemowe
  • [37] PTPiREE. (2023). Micro-installations in Poland. http://www.ptpiree.pl/energetyka-w—polsce/energetyka-w- liczbach/mikroinstalacje-w-Polsce
  • [38] Rapacka, P. (2023). Kolektory słoneczne wychodza z technologicznego cienia? Szansa dla Polski. Teraz Srodowisko. https://www.teraz-srodowisko.pl/aktualnosci/kolektory-slonecme—spiug-ieo—trend-13260.html
  • [39] Rogus, R., Castro, R., & Sołtysik, M. (2020). Comparative Analysis of Wind Energy Generation Forecasts in Poland and Portugal and Their Influence on the Electricity Exchange Prices. Inventions, 5(3). https://doi.org/10.3390/inventions5030035
  • [40]Ropatec. (2016). SMALL VERTICAL MS WIND TURBINES. https://s3.us-west- 2.amazonaws.com/1inquipequipment/302354/equipment__302354_catalog_db76e829f77f6ac1408c5a8b014e5868 9336ca08.pdf '
  • [41] Ropatec. (2023). Technical data. https://www.renugen.co.uk/content/smal1_wind_turbine_brochures/small_wind_turbine_brochures/Ropatec i Wind Turbine/Ropatec—TVision—(PubliEnergy)—3kW—Wind-Turbine—Brochurepdf '
  • [42] SD Wind Energy. (2023). SD3 Wind Turbine. https://sd-windenergy.com/small—wind-turbines/sd3-3kw-wind- turbine/
  • [43] Shokrzadeh, S., Jafari Jozam M. & Bibeau, E. (2014). Wind Turbine Power Curve Modeling Using Advanced Parametric and Nonparametric Methods. Sustainable Energy, IEEE Transactions On,5, 1262—1269. https: //doi. org/10. 1109/TSTE.2014.2345059
  • [44] Sribna, Y., Koval, V., Olczak, P., Bizonych, D., Matuszewska, D., & Shtyrov, O. (2021). Forecasting solar generation in energy systems to accelerate the implementation of sustainable economic development. Polityka Energetyczna — Energy Policy Journal, 24(3), 5—28. https://doi.org/10.33223/epj/ 141095 _
  • [45] Stecuła, K. (2018). Decision-making Dilemmas in Mining Enterprise and Environmental Issues, i. e. Green ’22 Thinking in Mining. 18th International Multidisciplinary Scientific Geoconference SGEM 2018, 357—364.
  • [46] Stecuła, K., & Brodny, J. (2018). Decision-making possibilities in the field of excavated material quality shaping? in terms of environmental protection, I. E. how to be greener in mining. International Multidisciplinary Scientific GeoConference Surveying Geology and Mning Ecology Management, SGEM 18(4 3), 243—250. . https: //doi. org/ 10 5593/sgem2018V/4.3/S06.029
  • [47] Stecuła, K, Olczak, P.,Kamiński, P. Matuszewska, D., & Duong Duc, H. (2022). Towards Sustainable Transport: Techno—Economic Analysis of Investing 1n Hydrogen Buses m Public Transport rn the Selected City of Poland. Energies, 15(24). https: //doi. org/10. 3390/en15249456
  • [48] Talarek, K., Knitter—Piątkowska, A., & Garbowski, T. (2022). Wind Parks in Poland—New Challenges and Perspectives. Energies, 15(19). https://doi.org/l0.3390/en15197004
  • [49] TGE SA. (2023). Polish Day-Ahead Market. tge.pl
  • [50] Trela, M., & Dubel, A. (2022). Net-Metering vs. Net-Billing from the Investors Perspective—Impacts of Changes in RES Financing in Poland on the Profitability of a Joint Photovoltaic Panels and Heat Pump System. Energies, 15(1), 227. https://doi.org/10.3390/en15010227
  • [51] URE. (2022). Ogłoszenia iwyniki aukcji. URE. https://www.ure.gov.p1/pl/oze/aukcje-oze/ogloszenia-i-wynild- nuk
  • [52] WRÓBLEWSKI, P. (2017). Effect of asymmetric elliptical shapes of the sealing ring sliding surface on the main parameters of the oil film. Combustion Engines, 168(1), 84—93. https://doi.org/10.19206/CE-2017—l 14
  • [53] Wróblewski, P. (2023). Investigation of energy losses of the internal combustion engine taking into account the correlation of the hydrophobic and hydrophilic. Energy, 264, 126002. https://doi.org/https://doi.org/l0.1016/j.energy.2022. 126002
  • [54] Wróblewski, P., & ISKRA, A. (2016). Geometry of shape of profiles of the sliding surface of ring seals in the aspect of friction losses and oil film parameters. Combustion Engines, 167, 38—52. https:-//doi.org/10.19206/CE-2016-404
  • [55] Wróblewski, P., & Niekurzak, M. (2022). Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions. Energies, 15(4). https://doi.org/10.3390/en15041329
  • [56] Zdonek, I., Tokarski, S., Mularczyk, A., & Turek, M. (2022). Evaluation of the Program Subsidizing Prosumer Photovoltaic Sources in Poland. Energies, ] 5(3). https://doi.org/ 10.3390/en15 030846
  • [57] Zdyb, A., & Gulkowski, S. (2020). Performance assessment of four different photovoltaic technologies in Poland. Energies, 13(1), 196. https://doi.org/10.3390/en13010196
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-003dbb00-d625-4341-bb3f-f57776e4cf82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.