PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Removal Performance of Bio-Sorption on Sunflower Seed Husk for Copper and Lead Ions from Aqueous Solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was concerned with the feasibility of using sunflower seed husk (waste material from the food industry) as a low-cost and available sorbent material to remove copper and lead ions. Sunflower seed husk was used for the biosorption of heavy metal ions (Pb(II) and Cu(II)) from aqueous solutions. The properties of natural adsorbent were characterized using Fourier transform infrared spectroscopy (FTIR). Pb(II) and Cu(II) adsorption were investigated in batch experiments through several influencing operating parameters, including contact time, sorbent dosage, initial pH, and initial concentration. The Pseudo-first-order and pseudo-second-order models were also applied to the experimental data to determine the adsorption kinetics. The results showed that adsorption of both ions fitted well by pseudo-Second-order, with determination coefficient R2 = 0.99, for both ions with SSE (1.628, 1.345) for Pb(II) and Cu(II), respectively.
Rocznik
Strony
110--117
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Environmental Research and Studied Center, University of Babylon, Iraq
  • Environmental Research and Studied Center, University of Babylon, Iraq
Bibliografia
  • 1. Sud, Mahajan, Kaur. 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–A review. Bioresour. Technol., 99(14), 6017–6027.
  • 2. Sharma, Vyas, Singh. 2013. A review on reactive adsorption for potential environmental applications. Adsorption, 19(1), 161–188.
  • 3. Tchounwou, Yedjou, Patlolla, Sutton. 2012. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol., 133–164.
  • 4. Wuana, Okieimen. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not., 2011.
  • 5. Abdi, Kazemi. 2015. A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Env. Sci, 6(5), 1386–1399.
  • 6. Gardea-Torresdey, Tang, Salvador. 1996. Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances. J. Hazard. Mater., 48(1–3), 191–206.
  • 7. Abd Ali, Naji, Almuktar, Faisal, Abed, Scholz, Naushad, Ahamad. 2020. Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust. J. Water Process Eng., 33, 101033.
  • 8. Abdul-Hameed. 2009. Competitive adsorption of heavy metals onto activated carbon in fixed bed column. Univ. Baghdad, Coll. Eng. Ph. D. Thesis.
  • 9. Monfared. 2011. Community garden heavy metals study. Support. by Environ. Canada, Ecol. action center, Nov. Scotia Agric. Coll. HALIEAX, Nov. Scotia Environ. Netw.
  • 10. Meski, Ziani, Khireddine. 2010. Removal of lead ions by hydroxyapatite prepared from the egg shell. J. Chem. Eng. Data, 55(9), 3923–3928.
  • 11. Lee, Kim, Laldawngliana, Tiwari. 2010. Removal behavior of surface modified sand for Cd (II) and Cr (VI) from aqueous solutions. J. Chem. Eng. Data, 55(9), 3089–3094.
  • 12. Benhammou, Yaacoubi, Nibou, Tanouti. 2005. Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. J. Colloid Interface Sci., 282(2), 320–326.
  • 13. Deng, Huang, Zeng, Wan, Xue, Wen, Liu, Chen, Li, Liu. 2019. Decontamination of lead and tetracycline from aqueous solution by a promising carbonaceous nanocomposite: interaction and mechanisms insight. Bioresour. Technol., 283, 277–285.
  • 14. Mhawesh, Abd Ali. 2020. Reuse of Brick Waste as a Cheap-Sorbent for the Removal of Nickel Ions from Aqueous Solutions. Iraqi J. Chem. Pet. Eng., 21(2), 15–23.
  • 15. Faisal, Abd Ali. 2016. Groundwater protection from lead contamination using granular dead anaerobic sludge biosorbent as permeable reactive barrier. Desalin. Water Treat., 57(9), 3891–3903.
  • 16. Abd Ali. 2015. A comparative Isothermal and Kinetic Study of the Adsorption of Lead (II) from Solution by Activated Carbon and Bentonite. J. Eng., 21(7), 45–58.
  • 17. Abd Ali, Khadim, Ibrahim. 2022. Simulation of the remediation of groundwater contaminated with ciprofloxacin using grafted concrete demolition wastes by ATPES as reactive material: Batch and modeling study. Egypt. J. Chem., 65, 585–596.
  • 18. Lamzougui, Es-Said, Nafai, Chafik, Bouhaouss, Bchitou. 2021. Optimization and modeling of Pb (II) adsorption from aqueous solution onto phosphogypsum by application of response surface methodology. Phosphorus. Sulfur. Silicon Relat. Elem., 196(6), 521–529.
  • 19. Amarasinghe, Williams. 2007. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J., 132(1–3), 299–309.
  • 20. Abd Ali, Flayeh, Ibrahim. 2019. Numerical modeling of performance of olive seeds as permeable reactive barrier for containment of copper from contaminated groundwater. Desalin. Water Treat, 139, 268–276.
  • 21. Rao, Mohapatra, Anand, Venkateswarlu. 2010. Re- view on cadmium removal from aqueous solutions. Int. J. Eng. Sci. Technol., 2(7).
  • 22. Faisal, Naji. 2019. Simulation of ammonia nitrogen removal from simulated wastewater by sorption onto waste foundry sand using artificial neural network. Assoc. Arab Univ. J. Eng. Sci., 26(1), 28–34.
  • 23. Faisal, Alquzweeni, Naji, Naushad. 2020. Predominant mechanisms in the treatment of wastewater due to interaction of benzaldehyde and iron slag byproduct. Int. J. Environ. Res. Public Health, 17(1), 226.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0038e545-d665-48b2-b480-06774e973975
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.