PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power losses and windings temperature of an induction machine under voltage subharmonics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the effect of voltage subharmonics on power losses and heating of an induction motor. An increase in power losses in stator and rotor windings and their impact on windings temperature is presented for subharmonics of various frequencies. The results of this study’s investigations are provided for subharmonics occurring as a single power quality disturbance and combined with voltage deviation. The appropriate electromagnetic computations were performed with the finite element method, and thermal ones – with an analytical method.
Rocznik
Strony
51--57
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Gdynia Maritime University, Faculty of Electrical Engineering Department of Marine Electrical Power Engineering 81-87 Morska St., 81-225 Gdynia, Poland
  • Gdynia Maritime University, Faculty of Electrical Engineering Department of Marine Electrical Power Engineering 81-87 Morska St., 81-225 Gdynia, Poland
  • Gdynia Maritime University, Faculty of Electrical Engineering Department of Marine Electrical Power Engineering 81-87 Morska St., 81-225 Gdynia, Poland
Bibliografia
  • 1. de Abreu J.P.G. & Emanuel, A.E. (2002) Induction motor thermal aging caused by voltage distortion and imbalance: loss of useful life and its estimated cost. IEEE Transactions on Industry Applications 38, 1, pp. 12–20.
  • 2. Agrawal, S., Mohanty, S.R. & Agarwal, V. (2015) Harmonics and inter harmonics estimation of DFIG based standalone wind power system by parametric techniques. International Journal of Electrical Power & Energy Systems 67, pp. 52–65.
  • 3. Basic, D. (2010) Input current interharmonics of variable-speed drives due to motor current imbalance. IEEE Transactions on Power Delivery 25, 4, pp. 2797–2806.
  • 4. Bolen, M.H.J. & Gu, I.Y.H. (2006) Signal processing of power quality disturbances. New York: Wiley.
  • 5. Elvira-Ortiz, D.A., Osornio-Rios, R.A., Morinigo-Sotelo, D., Rostro-Gonzalez, H. & Romero-Troncoso, R.J. (2018) Power quality monitoring system under different environmental and electric conditions. In: Harmonics and Quality of Power (ICHQP), 18th International Conference on IEEE, pp. 1–6, doi:10.1109/ICHQP.2018.8378846.
  • 6. Emanuel, A.E., Langella, R. & Testa, A. (2010) Limiting low frequency interharmonic distortion and voltage fluctuations. IEEE Power and Energy Society General Meeting, pp. 1–6, doi:10.1109/PES.2010.5589809.
  • 7. EN 50160:2010. Voltage characteristics of electricity supplied by public distribution network.
  • 8. Ghaseminezhad, M., Doroudi, A. & Hosseinian, S.H. (2016) Double-Cage Induction motors behavior under Flicker Conditions. Journal of Electric Power & Energy Conversion Systems 1, 1, pp. 1–7.
  • 9. Ghaseminezhad, M., Doroudi, A., Hosseinian, S.H. & Jalilian, A. (2017a) Analysis of voltage fluctuation impact on induction motors by an innovative equivalent circuit considering the speed changes. IET Generation, Transmission & Distribution 11(2), pp. 512–519.
  • 10. Ghaseminezhad, M., Doroudi, A., Hosseinian, S.H. & Jalilian, A. (2017b) An Investigation of Induction Motor Saturation under Voltage Fluctuation Conditions. Journal of Magnetics 22(2), pp. 306–314.
  • 11. Ghaseminezhad, M., Doroudi, A., Hosseinian, S.H. & Jalilian, A. (2019) Investigation of Increased Ohmic and Core Losses in Induction Motors Under Voltage Fluctuation Conditions. Iranian Journal of Science and Technology, Transactions of Electrical Engineering 43, pp. 373–382.
  • 12. Gnaciński, P. (2009) Effect of power quality on windings temperature of marine induction motors. Part I. Machine model. Energy Conversion and Management 50 (10), pp. 2463–2476.
  • 13. Gnaciński, P., Hallmann, D. & Pepliński, M. (2018) Cage induction machine under voltage subharmonics combined with voltage deviation. In: Proc. of XXIIIrd International Conference on Electrical Machine, Ramada Plaza Thraki, Alexandroupoli – Greece, pp. 1095–1100, September 3–6, 2018.
  • 14. Gnaciński, P. & Pepliński, M. (2016) Lowered voltage quality and load-carrying capacity of induction motors. IET Electric Power Applications 10.9, pp. 843–848.
  • 15. Gnaciński, P., Pepliński, M., Murawski, L. & Szeleziński, A. (2019) Vibration of Induction Machine Supplied with Voltage Containing Subharmonics and Interharmonics. IEEE Transactions on Energy Conversion 34, 4, pp. 1928– 1937.
  • 16. Gonzalez-Cordoba, J.L., Osornio-Rios, R.A., Granados- -Lieberman, D., Romero-Troncoso, R. De J. & Valtierra-Rodriguez, M. (2017) Correlation model between voltage unbalance and mechanical overload based on thermal effect at the induction motor stator. IEEE Transactions on Energy Conversion 32(4), pp. 1602–1610.
  • 17. Ho, S.L. & Fu, W.N. (2001) Analysis of indirect temperature-rise tests of induction machines using time stepping finite element method. IEEE Transactions on Energy Conversion 16, 1, pp. 55–60.
  • 18. Karimi, M., Mokhlis, H.,Naidu, K., Uddin, S. & Bakar, A.H.A. (2016) Photovoltaic penetration issues and impacts in distribution network – A review. Renewable and Sustainable Energy Reviews 53, pp. 594–605.
  • 19. Kovaltchouk, T., Armstrong, S., Blavette, A., Ahmed, H.B. & Multon, B. (2016) Wave farm flicker severity: Comparative analysis and solutions. Renewable Energy 91, pp. 32–39.
  • 20. Soltani, H., Davari, P., Zare, F. & Blaabjerg, F.(2018) Effects of modulation techniques on the input current interharmonics of Adjustable Speed Drives. IEEE Transactions on Industrial Electronics 65, 1, pp. 167–178.
  • 21. Soltani, H., Davari, P., Zare, F., Loh, P.C. & Blaabjerg, F. (2017) Characterization of input current interharmonics in adjustable speed drives. IEEE Transactions on Power Electronics 32, 11, pp. 8632–8643.
  • 22. Stumpf, P., Jardan, R.K. & Nagy, I. (2012) Subharmonics generated by space vector modulation in ultrahigh speed drives. IEEE Transactions on Industrial Electronics 59, 2, pp. 1029–1039.
  • 23. Stumpf, P., Varga, Z., Sepsi, T.D., Jardan, R.K. & Nagy, I. (2010) Ultrahigh speed induction machine overheated by subharmonics of PWM inverter. In: Proceedings IEEE 36th Annual Conference of the IEEE Industrial Electronics Society, pp. 1754–1759, doi:10.1109/IECON.2010. 5675416.
  • 24. Sürgevil, T. & Akpnar, E. (2009) Effects of electric arc furnace loads on synchronous generators and asynchronous motors. In: Proceedings of International Conference on Electrical and Electronics Engineering, pp. I-49–I-53.
  • 25. Tarasiuk, T. (2011) Estimator-analyzer of power quality: Part I – Methods and algorithms. Measurement: Journal of the International Measurement Confederation 44, 1, pp. 238–247.
  • 26. Tennakoon, S., Perera, S. & Robinson, D. (2008) Flicker attenuation – Part I: Response of three-phase induction motors to regular voltage fluctuations. IEEE Transactions on Power Delivery 23, 2, pp. 1207–1214.
  • 27. Xie, X., Zhang, X., Liu, H., Liu, H., Li, Y. & Zhang, C. (2017) Characteristic Analysis of Subsynchronous Resonance in Practical Wind Farms Connected to Series-Compensated Transmissions. IEEE Transactions on Energy Conversion 32(3), pp. 1117–1126.
  • 28. Zhang, D., An, R. & Wu, T. (2018) Effect of voltage unbalance and distortion on the loss characteristics of three-phase cage induction motor. IET Electric Power Applications 12, 2, pp. 264–270.
  • 29. Zhao, K., Cheng, L., Zhang, C., Nie, D. & Cai, W. (2017) Induction motors lifetime expectancy analysis subject to regular voltage fluctuations. IEEE Electrical Power and Energy Conference (EPEC), pp. 1–6, doi:10.1109/ EPEC.2017.8286230.
  • 30. Zhao, K., Ciufo, P. & Perera, S. (2014) Performance of adjustable speed drives subject to regular voltage fluctuations. Proceedings of International Conference on Harmonics and Quality of Power, ICHQP, pp. 253–257, doi:10.1109/ICHQP.2014.6842863.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0036cf5f-cc42-4a03-8b5c-b347ae75dc1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.