PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Friction stir processing of the AZ91 magnesium alloy with SiC particles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Purpose The main purpose of the research was friction modification by means of material stirring (FSP – Friction Stir Processing) of the surface layer of the AZ91 magnesium alloy with SiC particles. Design/methodology/approach: For the introduction of SiC particles and the formation of the composite structure in the surface layer of the magnesium alloy, the original multi chamber technology (MChS), developed as part of this study, was used. The scope of research verifying the effectiveness of the friction modification included both macro- and microscopic evaluation of the structural changes triggered by the treatment. Findings: The research results showed that friction modification of the AZ91 magnesium alloy leads to a strongly refined structure and intensively dispersed SiC ceramic particles in the surface layer of the magnesium alloy, resulting in the formation of the composite structure of the metal-ceramic type. In the stirred zone (SZ), a prevalence of equiaxed grains sized 2–15μm was observed, whereas the degree of refinement of structure depended on the treatment parameters, especially on the rotation speed of the stir tool. In the thermomechanically affected zone (TMAZ), deformed grains dominated, the location of which corresponded to the direction of the displacement of the plastified material during the FSP treatment. SiC particles have been found both in the SZ and in the TMAZ. Practical implications: The obtained results prove that using the FSP technology to modify the surface layer of magnesium alloys with SiC particles is an effective and promising solution with a high application potential, which allows for forming the material structure to a great extent. Originality/value: The structural research has shown that the Multi Chamber System technology enables a controlled and virtually lossless introduction of an additional phase in the course of the single-stage treatment, and minimizes the dislocation of the powder beyond the working area of the working tool.
Rocznik
Strony
85--92
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • The Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • The Faculty of Mechanical Engineering and Computer Science, Częstochowa University of Technology, Al. Armii Krajowej 21, 42-200 Częstochowa, Poland
autor
  • The Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. Templesmith, C.J. Dawes, Friction stir butt welding, International Patent Application No. PCT/GB92/02203, GB Patent Application No. 9125978.8 (1991) and U.S. Patent No. 5460317 (1995).
  • [2] B. Darras, E. Kishta, Submerged friction stir processing of AZ31 Magnesium alloy, Materials and Design 47 (2013) 133-137.
  • [3] C. Yeni, S. Sayer, O. Ertgrul, M. Pakdil, Effect of post-weld aging on the mechanical and microstructural properties of friction stir welded aluminium alloy 7075, Archives of Materials Science and Engineering 34/2 (2008) 105-109.
  • [4] J. Adamowski, C. Gambaro, E. Lertora, M. Ponte, M. Szkodo, Analysis of FSW welds made of aluminium alloy AW6082-T6, Archives of Materials Science and Engineering 28/8 (2007) 453-460.
  • [5] Y.C. Chen, K. Nakata, Evaluation of microstructure and mechanical properties in friction stir processed SKD61 tool steel, Materials Characterization 60 (2009) 1471-1475.
  • [6] Z.Y. Ma, A.L. Pilchak, M.C. Juhas, J.C. Williams, Microstructural refinement and property enhancement of cast light alloys via friction stir processing, Scripta Materialia 58 (2008) 361-366.
  • [7] M.L. Sanella, T. Engstrom, D. Storjohann, T.Y. Pan, Effects of friction stir processing on mechanical properties of the cast aluminium alloys A319 and A356, Scripta Materialia 53 (2005) 201-206.
  • [8] M. Vural, A. Ogur, G. Cam, C. Ozarpa, On the friction stir welding of aluminium alloys EN AW 2024-0 and EN AW 5754-H22, Archives of Materials Science and Engineering 28/1 (2007) 49-54.
  • [9] M.St. Węglowski, A. Pietras, Friction sir processing - analysis of the process, Archives of Metallurgy and Materials 56/3 (2011) 779-788. [10] R.S. Mishraa, Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering R 50 (2005) 1-78.
  • [11] G. Venkateswarlu, D. Devaraju, M.J. Davidson, B. Kotiveerachari, G. R.N. Tagore, Effect of overlapping ratio on mechanical properties and formability of friction stir processed Mg AZ31B alloy, Materials and Design 45 (2013) 480-486.
  • [12] Y. Zhao, S. Lin, L. Wu, F. Qu, The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy, Materials Letters 59 (2005) 2948-2952.
  • [13] M. Barmouz, M. Kazem Besharati Givi, J. Seyfi, On the role of processing parameters in production Cu/SiC metal matrix composities via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior, Materials Characterization 62 (2011) 108-117.
  • [14] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31, Materials Science and Engineering A 433 (2006) 50-54.
  • [15] M. Sharifitabar, A. Sarani, S. Khorshahian, M. Shafiee Afarani, Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route, Materials and Design 32 (2011) 4164-4172.
  • [16] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, MWCNTs?AZ31 surface composites fabricated by friction stir processing, Materials Science and Engineering A 419 (2006) 344-348.
  • [17] Y. Huang, T. Wang, W. Guo, L. Wan, S. Lv, Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by Direct Friction Stir processing, Materials and Design 59 (2014) 274-278.
  • [18] C.J. Lee, J.C. Huang, P.J. Hsieh, Mg based nano- composities fabricated by friction stir processing, Scripta Materialia 54 (2006)1415-1420.
  • [19] E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, K. Ikeuchi, Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminium plate by friction stir processing, Wear 268 (2010)1111-1121.
  • [20] L. Suvarna Raju, A. Kumar, Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing, Defence Technology 10 (2014) 375-383.
  • [21] D. Deepak, R.S. Sidhu, V.K. Gupta, Preparation of 5083 Al-SiC surface composite by friction stir processing and its mechanical characterization, International Journal of Mechanical Engineering 3/1 (2013) 1-11.
  • [22] P. Vijayavel, V. Balasubramanian, S. Sundaram, Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength and ductility of friction stir processes LM25AA-5% SiCp metal matrix composites, Materials and Design 57 (2014) 1-9.
  • [23] M. Saravana Durai, D. Muthukrishnan, A.N. Balaji, G.R. Raghav, Experimental investigation and material characterization of A356 based composite (TiO2) by friction stir processing, International Journal of Innovative Research in Science, Engineering and Technology 3/3 (2014) 1396-1399.
  • [24] B.W. Ahn, D.H. Choi, Y.H. Kim, S.B. Jung, Fabrication of SiCp/AA5083 composite via friction stir welding, Transactions of Nonferrous Metals Society of China 22 (2012) 634-638.
  • [25] M. Bahrami, M. Kazem Besharati Givi, K. Dehghani, N. Parvin, On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique, Materials and Design 53 (2014) 519-527.
  • [26] P. Lacki, Z. Kucharczyk, R.E. Śliwa, T. Gałaczyński, Impact of the selected parameters of the friction welding process with stirring on the temperature field, Ores and Metal R57/8 (2012) 524-532 (in Polish).
  • [27] Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, M. Fukusami, Modification of thermally sprayed cementem carbide layer by friction stir processing, Surface&Coatings Technology 204 (2010) 2459-2464.
  • [28] S.R. Anvari, F. Karimzadeh, M.H. Enayati, A novel route for development of Al-Cr-O surface nanocomposite by friction stir processing, Journal of Alloys and Compounds 562 (2013) 48-55.
  • [29] J. Iwaszko, K. Kudła, The way of the modification of the surface layer of metal materials. Patent application No. P.416112, Polish Patent Office (2016) (in Polish)
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0035278e-42cb-4a95-a510-6a258e4d87d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.