PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quinic acid as a novel depressant for efficient flotation separation of scheelite from calcite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are difficulties to the conventional depressant for achieving separation of scheelite from calcite for the sake of their similar surface properties. The paper reported that a new depressant quinic acid (QA) was used for separating scheelite from calcite. The adsorption experiments, zeta potential experiment, contact angle, FTIR, XPS analysis and crystal chemistry analysis were utilized to known the depression mechanism of selectivity. The results showed that the recovery of calcite decreased drastically after QA added, whereas hardly influenced on scheelite. The tungsten concentrate could reach 66.24% WO3 grade and 89.46% recovery with 1.5×10-4 mol•L-1 QA at pH=9. The surface adsorption quantity of the QA on calcite was much greater than scheelite, which enhanced significantly the hydrophilicity of calcite surface. Due to its negative charge, QA could be adsorbed on the surface of calcite which had positive charge instead of that of scheelite with negative charge. Subsequently, free carboxyl groups of QA could chelated with Ca2+ species on the calcite surface to form stable chemical adsorption in order to prevent the Pb-BHA to form further adsorption on that, so there was no increase significantly on hydrophobicity. However, QA was obviously weak for adsorbing while Pb-BHA which could still be chemically adsorbed on scheelite surface of pre-treated with QA.
Słowa kluczowe
Rocznik
Strony
art. no. 166008
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
  • Jiangxi Key Laboratory of Mining Engineering, Ganzhou, 341000, China
  • School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
  • Jiangxi Key Laboratory of Mining Engineering, Ganzhou, 341000, China
  • School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
autor
  • Jiangxi Key Laboratory of Mining Engineering, Ganzhou, 341000, China
  • School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
autor
  • Jiangxi Key Laboratory of Mining Engineering, Ganzhou, 341000, China
  • School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
Bibliografia
  • ABDALLA, M. A. M., PENG, H., YOUNUS, H. A., ET AL., 2018. Effect of synthesized mustard soap on the scheelite surface during flotation. Colloids Surf. A, 548, 108-116.
  • ALLEGRETTI, Y., FERRER, E. G., BARO´, A. C. G., ET AL., 2000. Oxovanadium (IV) complexes of quinic acid. Synthesis, characterization and potentiometric study, Polyhedron. 19, 2613-2619.
  • CHEN, P., ZHAI, J., SUN, W., ET AL., 2017. The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector. Miner. Eng. 111, 100-107.
  • CHEN, W., FENG, Q., ZHANG, G., ET AL., 2018. Investigations on flotation separation of scheelite from calcite by using a novel depressant: Sodium phytate. Miner. Eng. 126, 116-122.
  • CLIFFORD, M. N., JAGANATH, I. B., LUDWIG, I. A., ET AL., 2017. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep. 34, 1391-1421.
  • DENG, R., YANG, X., HU, Y., ET AL., 2018. Effect of Fe(II) as assistant depressant on flotation separation of scheelite from calcite. Miner. Eng. 118, 133-140.
  • DONG, L., JIAO, F., QIN, W., ET AL., 2019a. Activation effect of lead ions on scheelite flotation: Adsorption mechanism, AFM imaging and adsorption model. Sep. Purif. Technol. 209, 955-963.
  • DONG, L., JIAO, F., QIN, W., ET AL., 2018. New insights into the carboxymethyl cellulose adsorption on scheelite and calcite: adsorption mechanism, AFM imaging and adsorption model. Appl. Surf. Sci. 463, 105-114.
  • DONG, L., JIAO, F., QIN, W., ET AL., 2019b. Selective depressive effect of sodium fluorosilicate on calcite during scheelite flotation. Miner. Eng. 131, 262-271.
  • DONG, L., JIAO, F., QIN, W., ET AL., 2019c. Selective flotation of scheelite from calcite using xanthan gum as depressant. Miner. Eng. 138, 14-23.
  • DONG, L., JIAO, F., QIN, W., ET AL., 2021a. New insights into the depressive mechanism of citric acid in the selective flotation of scheelite from fluorite. Miner. Eng. 171, 107-117.
  • DONG, L., JIAO, F., QIN, W., ET AL., 2021b. Utilization of iron ions to improve the depressive efficiency of tartaric acid on the flotation separation of scheelite from calcite. Miner. Eng. 168, 106925.
  • ESPIRITU, E. R. L., NASERI, S., WATERS, K. E., .2018. Surface chemistry and flotation behavior of dolomite, monazite and bastnasite in the presence of benzohydroxamate, sodium oleate and phosphoric acid ester collectors. Colloids Surf. A, 546, 254-265.
  • FENG, B., PENG, J., ZHANG, W., ET AL., 2018. Use of locust bean gum in flotation separation of chalcopyrite and talc. Miner. Eng. 122, 79-83.
  • FOUCAUD, Y., FILIPPOVA, I. V., FILIPPOV, L. O., 2019. Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: Focus on the sodium silicate/sodium carbonate system. Powder Technol. 352, 501-512.
  • FU, J., HAN, H., WEI, Z., ET AL., 2021. Selective separation of scheelite from calcite using tartaric acid and Pb-BHA complexes. Colloids Surf. A, 622, 126657.
  • GABRIEL, C., MENELAOU, M., DASKALAKIS, M., ET AL., 2008. Synthetic, structural, spectroscopic and solution speciation studies of the binary Al(III)-quinic acid system. Relevance of soluble Al(III)-hydroxycarboxylate species to molecular toxicity. Polyhedron, 27, 2911-2920.
  • GAO, Y., GAO, Z., SUN, W., ET AL., 2016. Selective flotation of scheelite from calcite: a novel reagent scheme. Int. J. Miner. Process. 154, 10-15.
  • GAO, Z., LI, C., SUN, W., ET AL., 2017. Anisotropic surface properties of calcite: A consideration of surface broken bonds. Colloids Surf. A, 520, 53-61.
  • GAO, Z., WANG, Z., CHANG, J., ET AL., 2019. Micelles directed preparation of ternary cobalt hydroxide carbonate-nickel hydroxide-reduced graphene oxide composite porous nanowire arrays with superior faradic capacitance performance. J. Colloid Interf. Sci. 534, 563-573.
  • GONG, D., ZHANG, Y., WAN, L., ET AL., 2022. Efficient extraction of tungsten from scheelite with phosphate and fluoride. Process. Saf. Environ. 159, 708-715.
  • HAN, G., WEN, S., WANG, H., ET AL., 2020. Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite. Sep. Purif. Technol. 240, 116650.
  • HAN, H. HU, Y., SUN, W., ET AL., 2018, Novel catalysis mechanisms of benzohydroxamic acid adsorption by lead ions and changes in the surface of scheelite particles. Miner. Eng. 119, 11-22.
  • HAN, H., XIAO, Y., HU, Y., ET AL., 2020. Replacing Petrov's process with atmospheric flotation using Pb-BHA complexes for separating scheelite from fluorite. Miner. Eng. 145, 106053.
  • HOLMSTEDT, S., EFIMOV, A., CANDEIAS, N. R., 2021. O, O-silyl group migrations in quinic acid derivatives: an opportunity for divergent synthesis. Org. Lett. 23, 3083-3087.
  • INOMATA, Y., HANEDA, T., HOWELL, F.S., 1999. Characterization and crystal structures of zinc(II) and cadmium(II) complexes with D-()-quinic acid. J. Inorg. Biochem. 76, 13-17.
  • JANUSZ, W., SKWAREK, E., 2020. Comparison of oxalate, citrate and tartrate ions adsorption in the hydroxyapatite/aqueous electrolyte solution system. Colloids Interface. 4.
  • JIAO, F., DONG, L., QIN, W., ET AL., 2019. Flotation separation of scheelite from calcite using pectin as depressant. Miner. Eng. 136, 120-128.
  • JIN, E. S., YANG, F., ZHU, Y. Y., ET AL., 2016. Surface characterizations of mercerized cellulose nanocrystals by XRD, FT-IR and XPS. J. Cellulose Sci. Technol. (Chinese)
  • KALPAKLI, A. O., ILHAN, S., KAHRUMAN, C., ET AL., 2012. Dissolution behavior of calcium tungstate in oxalic acid solutions. Hydrometallurgy. 121-124, 7-15.
  • KANG, J., HU, Y., SUN, W., ET AL., 2019. Utilization of sodium hexametaphosphate for separating scheelite from calcite and fluorite using an anionic-nonionic collector. Minerals. 9, 705-721.
  • KANG, J., KHOSO, S. A., HU, Y., ET AL., Utilisation of 1-Hydroxyethylidene-1, 1-diphosphonicacid as a selective depressant for the separation of scheelite from calcite and fluorite. Colloids Surf. A 582 (2019), 123888.
  • KATELNIKOVAS, A., GRIGORJEVA, L., MILLERS, D., ET AL., 2017. Sol-gel preparation of nanocrystalline CaWO4. Lith. J. Phys. 47, 63-68.
  • KUANG, J., WANG, X., YU, M., ET AL., 2022. Flotation behavior and mechanism of calcium carbonate polymorphs with sodium oleate as collector. Powder Technol. 398, 117040.
  • KUPKA, N., RUDOLPH, M., 2018, Froth flotation of scheelite - A review. Int. J. Min. Sci. Techno. 28, 373-384.
  • LI, H., ZHANG, S., JIANG, H., ET AL., 2011. Effect of degree of substitution of carboxymethyl starch on diaspore depression in reverse flotation. T. Nonferr. Metal. Soc. 8, 1868-1873.
  • Liu, C., Ni, C., Yao, Chang, J. Z., ET AL., 2021. Hydroxypropyl amine surfactant: A novel flotation collector for efficient separation of scheelite from calcite. Miner. Eng. 167, 106898.
  • LIU, J., WANG, X., ZHU, Y., ET AL., 2022. Flotation separation of scheelite from fluorite by using DTPA as a depressant. Miner. Eng. 175 107311.
  • LIU, X., HUANG, G., LI, C., ET AL., 2015. Depressive effect of oxalic acid on titanaugite during ilmenite flotation. Miner. Eng. 79, 62-67.
  • LU, Y. L., LIU, D. W., JIA, X. D., ET AL., 2014. A review on flotation process of scheelite. Adv. Mater. Research. 962-965, 388-392.
  • LUO, Y., ZHANG, G., MAI, Q., ET AL., 2019. Flotation separation of smithsonite from calcite using depressant sodium alginate and mixed cationic/anionic collectors. Colloids Surf. A. 586, 124227.
  • MARTINS, J. G., CAMARGO, S. E. A., BISHOP, T. T., A. F. MARTINS, ET AL., 2018., Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation. Carbohyd. Polym. 197, 47-56.
  • NURI, O. S., IRANNAJAD, M., MEHDILO, A., 2019. Effect of surface dissolution by oxalic acid on flotation behavior of minerals. J. Mater. Res. Technol. 8, 2336-2349.
  • SALDYKA, M., COUSSAN, S., 2020. Infrared spectra and photodecomposition of benzohydroxamic acid isolated in argon matrices. J. Mol. Struct. 1219, 128506.
  • SAMIMI, S., ARDESTANI, M. S., DORKOOSH, F. A., 2021. Preparation of carbon quantum dots - quinic acid for drug delivery of gemcitabine to breast cancer cells. J. Drug. Deliv. Sci. Tec. 61, 102287
  • SARQUÍS, P. E., MENENDEZ-AGUADO, J. M., MAHAMUD, M. M., ET AL., 2014. Tannins: the organic depressants alternative in selective flotation of sulfides. J. Clean. Prod. 84, 723-726.
  • SHEPETA, E. D., SAMATOVA, L. A., KONDRAT’EV, S. A., 2012. Kinetics of calcium minerals flotation from scheelite-carbonate ores. J. Min. Sci. 48, 746-753.
  • VENTRUTI, G., SCORDARI, F., BELLATRECCIA, F., ET AL., 2015. Calcium tartrate esahydrate, CaC4H4O6⋅6H2O: a structural and spectroscopic study. Acta Crystallogr. Sect. B. 71, 68-73.
  • WANG, C., REN, S., SUN, W., ET AL., 2021. Selective flotation of scheelite from calcite using a novel self-assembled collector. Miner. Eng. 171, 107120.
  • WANG, J., BAI, J., YIN, W., ET AL., 2018. Flotation separation of scheelite from calcite using carboxyl methyl cellulose as depressant. Miner. Eng. 127, 329-333.
  • WANG, X., JIA, W., YANG, C., ET AL., 2021. Innovative application of sodium tripolyphosphate for the flotation separation of scheelite from calcite. Miner. Eng. 170, 106981.
  • WEI, Z. FU, J., HAN, H., ET AL., 2020. A highly selective reagent scheme for scheelite flotation: polyaspartic acid and Pb-BHA complexes. Minerals, 10, 561.
  • WEI, Z. HU, Y., HAN, H., ET AL., 2019. Selective separation of scheelite from calcite by self-assembly of H2SiO3 polymer using Al3+ in Pb-BHA flotation. Minerals, 9(1).
  • WEI, Z. SUN, W. WANG, P. ET AL., 2021. A novel metal-organic complex surfactant for high-efficiency mineral flotation. Chem. Eng. J. 426, 130853.
  • WEI, Z., HU, Y., HAN, H., ET AL., 2018. Selective flotation of scheelite from calcite using Al-Na2SiO3 polymer as depressant and Pb-BHA complexes as collector. Miner. Eng. 120, 29-34.
  • YANG, X., 2018. Beneficiation studies of tungsten ores - A review. Miner. Eng. 125, 111-119.
  • YAO, W., LI, M., ZHANG, M., ET AL., 2022. Effects of Pb2+ ions on the flotation behavior of scheelite, calcite, and fluorite in the presence of water glass. Colloids and Surfaces A: Physicochemical and Engineering Aspects 632.
  • ZHANG, C., HU, Y., W. SUN, ET AL., 2019, Effect of phytic acid on the surface properties of scheelite and fluorite for their selective flotation. Colloids Surf. A. 573, 80-87.
  • ZHANG, C., SUN, W., HU, Y., ET AL., 2018. Selective adsorption of tannic acid on calcite and implications for separation of fluorite minerals. J. Colloid. Interf. Sci. 512, 55-63.
  • ZHANG, W., HONAKER, R. Q., 2018. Flotation of monazite in the presence of calcite part II: Enhanced separation performance using sodium silicate and EDTA. Miner. Eng. 127, 318-328.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-003518e6-3a11-44de-ae7e-11197884ecbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.