PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania nad mikroprzepływowymi urządzeniami analitycznymi na bazie papieru (μPADs) – przegląd literatury

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Advances on paper-based analytical devices (μPADs) – literature review
Języki publikacji
PL EN
Abstrakty
PL
Mikroprzepływowe, urządzenia analityczne na bazie papieru (microfluidic paper-based analytical devices; μPADs) są relatywnie nową grupą urządzeń analitycznych. Ich początków możemy się doszukiwać w technikach chromatograficznych a w szczególności chromatografii planarnej. Możliwości zastosowania tych urządzeń, głównie do celów tanich, przesiewowych analiz biochemicznych, kryminalistycznych i środowiskowych są obecnie przedmiotem intensywnych badań. W niniejszej pracy dokonaliśmy podsumowania, które obejmuje historię powstania, podstawowe techniki wytwarzania, zastosowania praktyczne oraz potencjalne możliwości rozwoju takich urządzeń.
EN
Microfluidic paper-based analytical devices (μPADs) are relatively new group of analytical tools. Work principles of such devices partially evolved from chromatographic techniques, particularly planar chromatography. Recently, analytical devices based on paper are subject of extensive research, mostly focused on fast and non-expensive biochemical analysis but also for screening of medical and environmental samples. Attempts are being made for their applications in forensic - to organic explosives detection and in medicine - to diseases diagnosis. In this short review we presented a recent advances in area of μPADs technology.
Czasopismo
Rocznik
Strony
135--149
Opis fizyczny
Bibliogr. 43 poz., wykr.
Twórcy
autor
  • Zakład Toksykologii i Bioanalityki, Wydział Inżynierii Lądowej, Środowiska i Geodezji Politechnika Koszalińska; Śniadeckich 2, 75-453 Koszalin
  • Zakład Toksykologii i Bioanalityki, Wydział Inżynierii Lądowej, Środowiska i Geodezji Politechnika Koszalińska; Śniadeckich 2, 75-453 Koszalin
Bibliografia
  • 1. Whitesides G.M., The origins and the future of microfluidics. Nature 442 (2006) 368-373
  • 2. Craighead H., Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442 (2006) 387-393.
  • 3. Hou H.W., Bhagat A.A.S, Lee W.C., Huang S., Han J., Lim C.T., Microfluidic devices for blood fractionation. Micromachines 2 (2011) 319-343.
  • 4. Lauks I.R., Microfabricated biosensors and microanalytical systems for blood analysis. Acc Chem Res 31 (1998) 317-324.
  • 5. Bunyakul N., Edwards K.A., Promptmas C., Baeumner A.J., Cholera toxin subunit B detection in microfluidic devices. Anal Bioanal Chem 393 (2009) 177-186.
  • 6. Diercks A.H., Ozinsky A., Hansen C.L., Spotts J.M., Rodriguez D.J., Aderem A., A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal Biochem 386 (2009) 30-35.
  • 7. Mairhofer J., Roppert K., Ertl P., Microfluidic systems for pathogen sensing: a review. Sensors 9 (2009) 4804-4823.
  • 8. Marle L., Greenway G.M., Microfluidic devices for environmental monitoring. Trends Anal Chem 24(9) (2005) 795-802.
  • 9. Li H.F., Lin J.M., Applications of microfluidic systems in environmental analysis. Anal Bioanal Chem 393(2) (2009) 555-567.
  • 10. Hopwood A.J., Hurth C., Yang J., Cai Z., Moran N., Lee-Edghill J.G., Nordquist A., Lenigk R., Estes M.D., Haley J.P., McAlister C.R., Chen X., Brooks C., Smith S., Elliott K., Koumi P., Zenhausern F., Tully G., Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile. Anal Chem 82(16) (2010) 6991-6999.
  • 11. Shui L., Bomer J.G., Jin M., Carlen E.T., van den Berg A., Microfluidic DNA fragmentation for on-chip genomic analysis. Nanotechnology 22(49) (2011) 494013-494019.
  • 12. Sekhon B.S., Kamboj S., Microfluidics technology for drug discovery and development - an overview. Int J Pharm Tech Res 2(1) (2010) 804-809.
  • 13. Liu C., Wang L., Xu Z., Li J., Ding X., Wang Q., Chunyu L., A multilayer microdevice for cell-based high-throughput drug screening. J Micromech Microeng 22 (2012) 1-7.
  • 14. Terry S.C., A gas chromatographic air analyser fabricated on silicon wafer using integrated circuit technology. PhD Thesis. (1975) Stanford CA.
  • 15. Terry S.C., Jerman J.H., Angell J.B., A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices 26(12) (1979) 1880-1886.
  • 16. Li X., Ballerini D.R., Shen W., A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6 (2012) 011301-13 .
  • 17. Chen H., Cogswell J., Anagnostopoulos C., Faghri M., A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab Chip 12 (2012) 2909-2913.
  • 18. Martinez A.W., Phillips S.T., Butte M.J., Whitesides G.M., Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46 (2007) 1318-1320.
  • 19. Martinez A.W., Phillips S.T., Whitesides G.M., Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U.S.A. 105(50) (2008) 19606-19611.
  • 20. Bruzewicz D.A., Reches M., Whitesides G.M., Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80 (2008) 3387-3392.
  • 21. Abe K., Kotera K., Suzuki K., Citterio D., Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18) (2008) 6928-6934.
  • 22. Carrilho E., Martinez A.W., Whitesides G.M., Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81 (2009) 7091-7095.
  • 23. Lu Y., Shi W., Jiang L., Qin J., Lin B., Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30 (2009) 1497-1500.
  • 24. Dungchai W., Chailapakul O., Henry C.S., A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1) (2011) 77-82.
  • 25. Olkkonen J., Lehtinen K., Erho T., Flexographically printed fluidic structures in paper. Anal Chem 82(24) (2010) 10246-10250
  • 26. Chitnis G., Ding Z., Chang C.L., Savran C.A., Ziaie B., Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11 (2011) 1161-1165.
  • 27. Li X., Tian J., Nguyen T.H., Shen W., Paper-based microfluidic devices by plasma treatment. Anal Chem 80(23) (2008) 9131-9134.
  • 28. Fenton E.M., Mascarenas M.R., López G.P., Sibbett S.S., Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1(1) (2009) 124-129.
  • 29. Wang W., Wu W.Y., Zhu J.J., Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration. J Chromatogr A 1217(24) (2010) 3896-3899.
  • 30. Hossain S.M.Z., Luckham R.E., Smith A.M., Lebert J.M., Davies L.M., Pelton R.H., Filipe C.D.M., Brennan J.D., Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol−gel-derived bioinks. Anal Chem 81(2009) 5474-5483.
  • 31. Shi J., Tang F., Xing H., Zheng H., Bi L., Wang W., Electrochemical detection of Pb and Cd in paper-based microfluidic devices. J Braz Chem Soc 23(6) (2012)1124-1130.
  • 32. Khan M.S., Thouas G., Shen W., Whyte G., Garnier G., Paper diagnostic for instantaneous blood typing. Anal Chem 82 (2010) 4158-4164.
  • 33. Li M., Tian J., Al-Tamimi M., Shen W., Paper-based blood-typing device that reports patient's blood type "in writing". Angew Chem Int Ed 51 (2012) 5497-5501.
  • 34. Su J., Al-Tamimi M., Garnier G., Engineering paper as a substrate for blood typing bio-diagnostics. Cellulose 19 (2012) 1749-1758.
  • 35. Ali M.M., Aguirre S.D., Xu Y., Filipe C.D.M., Pelton R., Li Y., Detection of DNA using bioactive paper strips. Chem Commun 43 (2009) 6640-6642.
  • 36. Lu J., Ge S.., Ge L., Yan M., Yu J., Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochimica Acta 80 (2012) 334-341.
  • 37. Hossain S.M.Z., Luckham R.E., McFadden M.J., Brennan J.D., Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81 (2009) 9055-9064.
  • 38. Nie Z.H., Deiss F., Liu X.Y., Akbulut O., Whitesides G.M., Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10 (2010) 3163-3169.
  • 39. Doble P., Blanes L., Development of microfluidic paper-based analytical devices (μ-PADs) using a 3D printer: in-field screening of organic explosives. In: Bachelor of forensic science (honours) in applied chemistry; Forensic Honours Projects 2013, University of Technology, Sydney, 2012.
  • 40. Ge L., Wang S., Song X., Ge S., Yu J., 3D origami-based multifunction-integrated immunodevice: Low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12 (2012) 3150-3158.
  • 41. Martinez A.W., Scott T.P., Carrilho E., Thomas III S.W., Sindi H., Whitesides G.M., Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80(10) (2008) 3699-3707.
  • 42. Liu H., Crooks R.M., Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal Chem 84(5) (2012) 2528-2532.
  • 43. Vella S.J., Beattie P., Cademartiri R., Laromaine A., Martinez A.W., Phillips S.T., Mirica K.A., Whitesides G.M., Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem 84 (2012) 2883-2891.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0034cd94-4598-409e-961b-444a97b086a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.