PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of shape and roughness on flotation and aggregation of quartz particles

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A combination of grinding and abrasion processes was applied to control the shape and roughness of quartz particles to investigate their roles in flotation recoveries and aggregation rates at different collector concentrations. The results showed that while the roundness values (Ro) of quartz particles varied in the range of 0.56-0.58 (Ro) at 480 and 1920 sec grinding, the roughness values of particles varied between 3.12-4.02 μm at 60 and 240 min abrasion. The flotation and aggregation tests showed while the flotation recovery increased from 31.3 % to 34.2 % in reverse proportion to their roundness values at 1x10-6 M DAH concentrations, a similar increasing trend from 34.1% to 38.1 % as a function of their roughness value from 3.12 μm to 4.02 μm. On the other hand, in the case of aggregation tests, while the turbidity values decreased from 40.6 NTU to 32.1 NTU at 1x10-6 M DAH concentrations for rounder particles, it was found as 36.2 NTU to 31.8 NTU for rougher ones. The overall results of this study indicated that tuning the morphology of quartz particles may be used to adjust both the flotation and aggregation rate of particles.
Słowa kluczowe
Rocznik
Strony
art. no. 154021
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
  • Adana Alparslan Türkeş Science and Technology University, Faculty of Engineering, Department of Mining Engineering, 01250, Sarıçam, Adana
Bibliografia
  • AHMED, M. M., 2010. Effect of comminution on particle shape and surface roughness and their relation to flotation process. International Journal of Mineral Processing, 94(3-4), 180-191.
  • ALLEN, T., 1997. Particle size measurement, volume 1, Powder Sampling, and Particle Size Measurement, 5th ed., 38. London, UK: Chapman & Hall.
  • CAYIRLI, S., 2014. Investigation of the effects of grinding parameters on mica grinding in a stirred ball mill. Ph.D. Thesis, Eskisehir Osmangazi University.
  • CAYIRLI, S. 2018. Influences of operating parameters on dry ball mill performance. Physicochemical Problems of Mineral Processing, 54 (3), 751-762.
  • DENIZ, V., 2011. Influence of interstitial filling on breakage kinetics of gypsum in ball mill. Advanced Powder Technology, 22, 512-517.
  • DENIZ, V., 2012. The effects of ball filling and ball diameter on kinetic breakage parameters of barite powder. Advanced Powder Technology, 23, 640-646.
  • FENG, D., AND ALDRICH, C., 2000. A comparison of the flotation of ore from the Merensky reef after wet and dry grinding. International Journal of Mineral Processing, 60(2), 115-129.
  • FORSBERGG, E. and ZHAI, H., 1985. Shape and surface properties of particles liberated by autogenous grinding. Scand. J. Metall., 14, 25-32.
  • GUVEN, O., AND ÇELIK, M. S., 2016. Interplay of particle shape and surface roughness to reach maximum flotation efficiencies depending on collector concentration. Mineral Processing and Extractive Metallurgy Review, 37(6), 412-417.
  • GUVEN, O., CELIK, M. S., AND DRELICH, J. W., 2015. Flotation of methylated roughened glass particles and analysis of particle–bubble energy barrier. Minerals Engineering, 79, 125-132.
  • GUVEN, O., KARAKAS, F., KODRAZI, N., AND ÇELIK, M. S., 2016. Dependence of morphology on anionic flotation of alumina. International Journal of Mineral Processing, 156, 69-74.
  • GUVEN, O., KAYMAKOĞLU, B., EHSANI, A., HASSANZADEH, A., AND SIVRIKAYA, O., 2022. Effects of grinding time on morphology and collectorless flotation of coal particles. Powder Technology, 117010.
  • GUVEN, O., OZDEMIR, O., KARAAGACLIOGLU, I. E., AND CELIK, M. S., 2015. Surface morphologies and floatability of sand-blasted quartz particles. Minerals Engineering, 70, 1-7.
  • GUVEN, O., SERDENGECTI, M. T., TUNC, B., OZDEMIR, O., KARAAGACLIOGLU, I. E., AND ÇELIK, M. S., 2020. Effect of particle shape properties on selective separation of chromite from serpentine by flotation. Physicochemical Problems of Mineral Processing, 56.
  • HASSAS, B. V., GUVEN, O., BASTURKCU, E., AND CELIK, M. S., 2021. Morphological changes of glass bead particles upon an abrasive blasting as characterized by settling and flotation experiments. Physicochemical Problems of Mineral Processing, 57.
  • HUANG, K., AND YOON, R. H., 2020. Control of bubble ζ-potentials to improve the kinetics of bubble-particle interactions. Minerals Engineering, 151, 106295.
  • KARAKAS, F., AND HASSAS, B. V., 2016. Effect of surface roughness on the interaction of particles in flotation. Physicochemical Problems of Mineral Processing, 52.
  • KIM, H. N., KIM, J. W., KIM, M. S., LEE, B. H., AND KIM, J. C., 2019. Effects of ball size on the grinding behavior of talc using a high-energy ball mill. Minerals, 9(11), 668.
  • KOH, P. T. L., HAO, F. P., SMITH, L. K., CHAU, T. T., AND BRUCKARD, W. J., 2009. The effect of particle shape and hydrophobicity in flotation. International Journal of Mineral Processing, 93(2), 128-134.
  • TURK, T., PEREK, K., KARAKAS, F., AND CELIK, M.S., 2018. Effect of grinding time on particle shape in barite/SDS flotation system. In Proceedings of 16th International Mineral Processing Symposium (IMPS 2018) (pp. 378-383).
  • ULUSOY, U., YEKELER, M., AND HIÇYILMAZ, C., 2003. Determination of the shape, morphological and wettability properties of quartz and their correlations. Minerals Engineering, 16(10), 951-964.
  • ULUSOY, U., 2018. Dynamic image analysis of differently milled talc particles and comparison by various methods. Particulate Science and Technology 36 (3), 332–9.
  • ULUSOY, U. 2019. Quantifying of particle shape differences of differently milled barite using a novel technique: Dynamic image analysis. Materialia, 8, 100434.
  • ULUSOY, U., and BAYAR, G., 2022. Prediction of average shape values of quartz particles by vibrating disc and ball milling using dynamic image analysis based on established time-dependent shape models. Particulate Science and Technology, 1-17.
  • UYSAL, T., GUVEN, O., OZDEMIR, O., KARAAGACLIOGLU, İ. E., TUNÇ, B., AND ÇELIK, M. S., 2021. Contribution of particle morphology on flotation and aggregation of sphalerite particles. Minerals Engineering, 165, 106860.
  • VIZCARRA, T. G., HARMER, S. L., WIGHTMAN, E. M., JOHNSON, N. W., AND MANLAPIG, E. V., 2011. The influence of particle shape properties and associated surface chemistry on the flotation kinetics of chalcopyrite. Minerals Engineering, 24(8), 807-816.
  • WIESE, J., BECKER, M., YORATH, G., AND O’CONNOR, C., 2015. An investigation into the relationship between particle shape and entrainment. Minerals Engineering, 83, 211-216.
  • YEKELER, M., ULUSOY, U., AND HIÇYILMAZ, C., 2004. Effect of particle shape and roughness of talc mineral Grodnu by different mills on the wettability and floatability. Powder Technology, 140(1-2), 68-78.
  • YIN, W. Z., YANG, X. S., ZHOU, D. P., LI, Y. J., AND LU, Z. F., 2011. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Transactions of Nonferrous Metals Society of China, 21(3), 652-664.
  • ZHU, Z., YIN, W., WANG, D., SUN, H., CHEN, K., AND YANG, B., 2020. The role of surface roughness in the wettability and floatability of quartz particles. Applied Surface Science, 527, 146799.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-003236d2-176e-4d0d-8996-9112db5e7f42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.