Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this study, variations in the contact resistance of electroplated Au-Fe alloy layers with Fe content were investigated. The contact resistance of electroplated Au-Fe alloy layers that were subject to thermal aging at 260°C in the atmosphere, tended to increase significantly with an increase in the Fe content. Through an analysis method employing X-ray photoelectron spectroscopy (XPS/ESCA) and Auger electron spectroscopy (AES), Ni oxides, such as NiO and Ni2O3, on the surface of the thermally aged electroplated Au-Fe alloy layers were observed. It is believed that the Ni oxide existing on the surface diffused from the underlying electroplated Ni layers to the surface through the grain boundaries in the electroplated Au-Fe layers during the thermal aging. As the Fe content in the electroplated Au-Fe layers increased, the grain size decreased. As the grain size decreases, more Ni oxide was detected on the surface. Therefore, with a rise in the Fe content, more Ni diffuses to the surface via grain boundaries, and more Ni oxide is formed on the surface of the electroplated Au-Fe layers, increasing the contact resistance of the electroplated Au-Fe alloy layers.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1503--1507
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
- Kyungpook National University, Department of Materials Science and Metallurgical Engineering, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Korea
autor
- Kyungpook National University, Department of Materials Science and Metallurgical Engineering, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Korea
Bibliografia
- [1] P. Goodman, Gold Bull. 35, 21 (2002).
- [2] I. Christie, B. Cameron, Gold Bull. 27, 12 (1994).
- [3] M. Antler, IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-10, 420 (1987)
- [4] Y. Okinaka, M. Hoshino, Gold Bull. 31, 3 (1998).
- [5] M.R. Pinnel, H G. Tompkins, D.E. Heath, J. Electrochem. Soc. 126 (10), 1798 (1979).
- [6] O. Kurtz, J. Barthelmes, R. Ruther, M. Danker, F. Lagorce-Broc, F. Bozsa, D. Brookes, Met. Finish. 109 (5), 19 (2011).
- [7] K. Horibe, IEICE Technical Report, EMC91, 61 (1991).
- [8] J. W. Lee, I. J. Son, J. Kor. Inst. Surf. Eng. 46 (6), 235 (2013).
- [9] H. G Tompkins, M. R. Pinnel, J. Appl. Phys. 48 (7), 3144 (1977).
- [10] T. E. Bardy, C. T. Hovland,. J. Vac. Sci. Technol. 18 (2), 339 (1981).
- [11] J. Deuber, H. J. Luebke, Plat. Surf. Fin. 69 (7), 55 (1982).
- [12] J. K. Bass, H. Fine, GJ. Cisneros, Am. J. Orthod. Dentofacial Orthop. 102, 280 (1993).
- [13] T. Watanabe, J. Sur. Finish. Soc. Jpn. 40, 280 (1989).
- [14] Y. Okinaka, S. Nakahara, J. Electrochem. Soc. 123 (9), 1284 (1976).
- [15] M. W. Lee, T. S. Jang, J. Korean Powder Metall. Inst. 23 (6), 432
Uwagi
EN
1. This work was financially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (grant No. NRF-2014R1A1A1007848).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-002e39cc-42e5-4467-8be7-b62b35495bd4