PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A critical evaluation of the variability induced by different mathematical equations on hydraulic conductivity determination using disc infiltrometer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Infiltration measurements are mandatory input for hydrological modelling. Disc infiltrometer is used for determining infiltration in the field by allowing three-dimensional flow of water under the negative head at the surface. There are steady-state and transient mathematical equations for obtaining hydraulic characteristics based on disc infiltrometer measurements. Different assumptions and formulations adopted by these equations may induce analysis-dependent variability in hydraulic parameter determination from the disc infiltrometer measurements. In this study, a critical evaluation of nine mathematical equations used for determining near-surface saturated hydraulic conductivity based on mini-disc infiltrometer (MDI) measurements in the field for two different seasons is carried out. The saturated hydraulic conductivity determined by Guelph permeameter was used as the reference for evaluating the appropriateness of equations considered in this study. Considering different statistical procedures, Wooding–Gardner, Weir’s Refinement, van Genuchten Zhang, Ankeny, and Haverkamp equations identified by Bland–Altman plot are recommended as the most reliable mathematical equations that can be used for analysing MDI measurements. The appropriateness of the mathematical equation for MDI analysis with respect to soil type needs to be investigated further.
Czasopismo
Rocznik
Strony
863--877
Opis fizyczny
Bibliogr. 66 poz.
Twórcy
autor
  • Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
  • Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
Bibliografia
  • 1. Angulo-Jaramillo R, Vandervaere J, Roulier S, Thony J, Gaudet J, Vauclin M (2000) Field measurement of soil surface hydraulic properties by disc and ring infiltrometers-a review and recent developments. Soil Tillage Res 55:1–29
  • 2. Angulo-Jaramillo R, Bagarello V, Iovino M, Lassabatere L (2016) Infiltration measurements for soil hydraulic characterization. Springer, Switzerland
  • 3. Ankeny MD, Ahmed M, Kaspar TC, Horton R (1991) Simple field method for determining unsaturated hydraulic conductivity. Soil Sci Soc Am J 55:467–470
  • 4. ASTM D 2216 (2010) Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. ASTM International, West Conshohocken
  • 5. ASTM D 2487 (2011) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken
  • 6. ASTM D 6938 (2015) Standard test methods for in-place density and water content of soil and soil-aggregate by nuclear methods (Shallow Depth). ASTM International, West Conshohocken
  • 7. ASTM D 7928 (2017) Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM International, West Conshohocken
  • 8. ASTM D 854 (2014) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken
  • 9. Bagarello V, Giordano G (1999) Comparison of procedures to estimate steady flow rate in field measurement of saturated hydraulic conductivity by the guelph permeameter method. J Agric Eng Res 74(1):63–71
  • 10. Bean EZ, Hunt WF, Bidelspach DA (2007) Field survey of permeable pavement surface infiltration rates. J Irrig Drain Eng 133(3):249–255
  • 11. Bouwer H (1969) Planning and interpreting soil permeability measurements. J Irrig Drain Div Proc Am Soc Civil Eng 95(3):391–402
  • 12. Braždžionytė J, Macas A (2007) Bland–Altman analysis as an alternative approach for statistical evaluation of agreement between two methods for measuring hemodynamics during acute myocardial infarction. Medicina 43:208–214
  • 13. Buckland GD (1988) Graph for estimating field scale hydraulic conductivity sampling requirements. Can Agric Eng 30:323–324
  • 14. Carsel RF, Parrish RS (1988) Developing joint probability distribution of soil water retention characteristics. Water Resour Res 24:755–769
  • 15. Chahinian N, Moussa R, Andrieux P, Voltz M (2005) Comparison of infiltration models to simulate flood events at the field scale. J Hydrol 306(1):191–214
  • 16. Chahinian N, Moussa R, Andrieux P, Voltz M (2006) Accounting for temporal variation in soil hydrological properties when simulated surface runoff on tilted plots. J Hydrol 326:135–152
  • 17. David MF, César GC (2009) New method for monitoring soil water infiltration rates applied to a disc infiltrometer. J Hydrol 379:315–322
  • 18. Dohnal M, Dusek J, Vogel T (2010) Improving hydraulic conductivity estimates from minidisc infiltrometer measurements for soils with wide pore-size distributions. Soil Sci Soc Am J 74(3):804–811
  • 19. Elrick DE, Reynolds WD (1992) Methods of analyzing constant head well permeameter data. Soil Sci Soc Am J 56:320–323
  • 20. Elrick DE, Reynolds WD, Tan KA (1989) Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground Water Monitor Rev 9(3):184–193
  • 21. Gadi VK, Tang Y-R, Das A, Monga C, Garg A, Berretta C, Sahoo L (2017) Spatial and temporal variation of hydraulic conductivity and vegetation growth in green infrastructures using infiltrometer and visual technique. CATENA 155:20–29
  • 22. Gardner W (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85:228–232
  • 23. Garg A, Li J, Hou J, Berretta C, Garg A (2017a) A new computational approach for estimation of wilting point for green infrastructure. Measurement 111:351–358
  • 24. Garg A, Vijayaraghavan V, Zhang J, Lam JSL (2017b) b) Robust model design for evaluation of power characteristics of the cleaner energy system. Renew Energy 112:302–313
  • 25. Garg A, Vijayaraghavan V, Zhang J, Li S, Liang X (2017c) Design of robust battery capacity model for electric vehicle by incorporation of uncertainties. Int J Energy Res 41(10):1436–1451
  • 26. Ghosh B, Sreeja P (2019) A critical evaluation of measurement induced variability in infiltration characteristics for a river sub-catchment. Measurement 132:47–59
  • 27. Haverkamp R, Ross PJ, Smettem KRJ, Parlange JY (1994) Three–dimensional analysis of infiltration from the disc infiltrometer. Water Resour Res 30:2931–2935
  • 28. Haverkamp RF, Bouraoui C, Zammit R, Angulo-Jaramillo R, Delleur JW (1999) Soil properties and moisture movement in the unsaturated zone. In: Delleur JW (ed) The handbook of groundwater engineering. CRC, Boca Raton, pp 2931–2935
  • 29. Haverkamp R, Leij FJ, Fuentes C, Sciortino A, Ross PJ (2005) Soil water retention: I. Introduction of a shape index. Soil Sci Soc Am J 69:1881–1890
  • 30. Hayashi M, Quinton WL (2004) A constant-head well permeameter method for measuring field-saturated hydraulic conductivity above an impermeable layer. Can J Soil Sci 84:255–264
  • 31. Hillel D (1998) Environmental soil physics: fundamentals, applications, and environmental considerations. Academic Press, Waltham
  • 32. Homolák M, Capuliak J, Pichler V, Lichner Ľ (2009) Estimating hydraulic conductivity of a sandy soil under different plant covers using minidisk infiltrometer and a dye tracer experiment. Biologia 64(3):600–604
  • 33. Hsu SMPE, Ni C-F, Hung P-F (2002) Assessment of three infiltration formulas based on model fitting on richards equation. J Hydrol Eng 7(5):373–379
  • 34. IS 2720-29 (1975) Methods of test for soils part 29: determination of dry density of soils, in-place by the core-cutter method. Bureau of Indian Standards Publications, New Delhi
  • 35. Jacques D, Mohanty BP, Feyen J (2002) Comparison of alternative methods for deriving hydraulic properties and scaling factors from single-disc tension infiltrometer measurements. Water Resour Res 38(7):25-1–25-14
  • 36. Krouwer JS (2002) Setting performance goals and evaluating total analytical error for diagnostic assays. Clin Chem 48(6):919–927
  • 37. Latorre B, Peña C, Lassabatere L, Angulo-Jaramillo R, Moret-Fernández D (2015) Estimate of soil hydraulic properties from disc infiltrometer three-dimensional infiltration curve. Numerical analysis and field application. J Hydrol 527:1–12
  • 38. Lee RS, Welker AL, Traver RG (2016) Modeling soil matrix hydraulic properties for variably-saturated hydrologic analysis. J Sustain Water Built Environ 2(2):04015011
  • 39. Logsdon SD, Jaynes DB (1993) Methodology for determining hydraulic conductivity with tension infiltrometers. Soil Sci Soc Am J 57:1426–1431
  • 40. METER Group Inc. USA (2018) Mini Disc Infiltrometer User’s Manual. 10564-11, Meter Group, 2365 Northeast Hopkins Court, Pullman, WA 99163, USA
  • 41. McKenzie N, Coughlan K, Cresswell H (2002) Soil physical measurement and interpretation for land evaluation. Australian soil and land survey handbooks series. CSIRO Publishing, Clayton
  • 42. Mishra SK, Tyagi JV, Singh VP (2003) Comparison of infiltration models. Hydrol Process 17(13):2629–2652
  • 43. Morbidelli R, Saltalippi C, Flammini A, Cifrodelli M, Picciafuoco T, Corradini C, Govindaraju RS (2017) In situ measurements of soil saturated hydraulic conductivity: assessment of reliability through rainfall–runoff experiments. Hydrol Process 31:3084–3094
  • 44. Nielsen DR, Biggar JW, Erh KT (1973) Spatial variability of field-measured soil-water properties. Hilgardia 42(7):215–260
  • 45. Pitt R, Chen SE, Clark SE, Swenson J, Ong CK (2008) Compaction’s impacts on urban storm-water infiltration. J Irrig Drain Eng 134(5):652–658
  • 46. Revol P, Clothier BE, Mailhol JC, Vachaud G, Vauclin M (1997) Infiltration from a surface point source and drip irrigation 2. An approximate time-dependent solution for wet-front position. Water Resour Res 33(8):1869–1874
  • 47. Reynolds WD, Elrick DE (1985) In situ measurement of field-saturated hydraulic conductivity, sorptivity and α-parameter using the Guelph permeameter. Soil Sci 140:292–302
  • 48. Reynolds WD, Elrick DE, Clothier BE (1985) The constant head well permeameter: effect of unsaturated flow. Soil Sci 139:172–180
  • 49. Reynolds WD, Elrick DE, Youngs EG (2002) Single-ring and double-or-concentric-ring infiltrometer. In: Dane JH, Topp GC (eds) Methods of soil analysis. Soil Science Society of America, Madisson, pp 821–826
  • 50. Ronayne MJ, Houghton TB, Stednick JD (2012) Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. J Hydrol 458–459:103–109
  • 51. Salverda AP, Dane JH (1993) An examination of the Guelph permeameter for measuring the soil’s hydraulic properties. Geoderma 57(4):405–421
  • 52. Sihag P, Tiwari NK, Ranjan S (2017) Estimation and inter-comparison of infiltration models. Water Sci 31(1):34–43
  • 53. Šimunek J, van Genuchten MT, Gribb MM, Hopmans JW (1998) Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil Tillage Res 47:27–36
  • 54. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic properties of unsaturated soils. Soil Sci Soc Am J 44:892–898
  • 55. Vandervaere J-P, Vauclin M, Elrick DE (2000) Transient flow from tension infiltrometers-I: the two-parameter equation. Soil Sci Soc Am J 64(4):1263–1272
  • 56. Verbist KMJ, Cornelis WM, Torfs S, Gabriels D (2013) Comparing methods to determine hydraulic conductivities on stony soils. Soil Sci Soc Am J 77(1):25–42
  • 57. Wang D, Yates SR, Lowery B, van Genuchten MT (1998) Estimating soil hydraulic properties using tension infiltrometer with varying disc diameters. Soil Sci 163(5):356–361
  • 58. Weir GJ (1987) Steady infiltration from small shallow circular ponds. Water Resour Res 23(4):733–736
  • 59. White I, Sully MJ (1987) Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resour Res 23:1514–1522
  • 60. White I, Sully MJ, Perroux KM (1992) Measurement of surface-soil hydraulic properties: disc permeameters, tension infiltrometers and other techniques. In: Topp CG, Reynolds WD, Green RE (eds) Advances in measurement of soil physical properties: bringing theory into practice. Soil Science Society of American Journal of Special Publication 30, SSSA, Madisson, pp 69–103
  • 61. Wooding RA (1968) Steady infiltration from large shallow circular pond. Water Resour Res 4:1259–1273
  • 62. Zhang R (1997a) Determination of soil sorptivity and hydraulic conductivity from the disc infiltrometer. Soil Sci Soc Am J 61:1024–1030
  • 63. Zhang R (1997b) Infiltration models for the disc infiltrometer. Soil Sci Soc Am J 61:1597–1603
  • 64. Zhang R (1998) Estimating soil hydraulic conductivity and macroscopic capillary length from the disc infiltrometer. Soil Sci Soc Am J 62:1513–1521
  • 65. Zhang R, van Genuchten MT (1994) New models for unsaturated soil hydraulic properties. Soil Sci 158:77–85
  • 66. Zhou SM, Warrington DN, Lei TW, Lei Q-X, Zhang M-L (2015) Modified CN method for small watershed infiltration simulation. J Hydrol Eng 20(9):04014095
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-002ca4b2-dba1-42f0-bf4d-78fdd80d6682
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.