
Zezwala się na korzystanie z artykułu na warunkach
licencji Creative Commons Uznanie autorstwa 3.0

1. Introduction

The ability of control through providing proper methods of com-
munication between the distributed automation system nodes
gives a big opportunity to extend and to change robotic sys-
tem configuration and also opens new opportunities up allo-
wing expanding or limiting the functionality of the system. The
basis of failure-free control distributed system is fast and relia-
ble information exchange between the objects. The more com-
plex system is, the greater amount of data is transferred. This
is a big problem in complex automation systems. The protocol
and the data transmission algorithm have a big impact on the
data exchange efficiency.

Master-slave architecture is the most commonly used
in automation systems. In such systems, the master plays
a key role setting information exchange scenario with slave
units. This architecture most often enforces to define sys-
tem construction structure in advance or to use static pre-
defined network addresses. An additional problem is the
lack of direct communication possibility between slave units.
To enable communication between devices, one of the ava-
ilable communication protocols can be used, e.g. Modbus.
Implementation of any protocol imposes the creation of applica-
tion dependent on the operating system and hardware platform.
In addition, data exchange rules implementation in control and
monitor applications is a big problem. It makes core implemen-
tation of control algorithm complicated.

This paper presents a communication platform proposal
implementing selected communication mechanism and provi-
ding data exchange services between applications run in each
nodes of distributed automation control system and separating

control applications from the operating system and hardware
platforms. Described communication platform allows also defi-
ning any architectural: master-slave, multi-slave/master with the
possibility of direct communication between all devices.

Many companies and scientific centers around the world have
been working on similar data exchange and modularity solutions
for robotic systems. For example, NASA has been working on
CLARAty platform, which has been designed for the develop-
ment and maturation of various research technologies. CLARAty
platform is currently used in the Mars Exploration Program
and Rover Mission [9, 10]. The most popular open solutions
are: Player, MIRO, ROS, OROCOS and RT-Middleware [9].
The main purpose of the above systems is to provide software
genericness of higher-level applications and to provide commu-
nication primitives [12]. The architecture of currently available
solutions requires major changes to existing software during the
adaptation process.

The proposed solution allows using the functionality at every
stage of software evolution with relatively small effort compared
to existing big systems. Communication platform carries such
a task out should be characterized by generic construction [12].
The delimitation should be so effective that the possible change
of the operating system does not have a direct impact on ope-
ration of application based on platform assumptions [11]. Fur-
ther sections of the article contain information about platform
genericness and current information exchange and synchroniza-
tion mechanisms.

2. Platform Genericness

Platform genericness is understood in such a way that the plat-
form should differentiate the relationship between the operating
system controlling the device and the application uses the API
(Application programming interface) from the library provided
by the platform [8]. The removal of relationships with operating
system functions and specified operating system behaviors allows
to keep a platform genericness. It means the possibility of execu-
ting application on different hardware platforms with different
operating systems without applying changes [7]. The platform
genericness was developed thanks to generic programming para-
digm, which focuses on abstracting types to a narrow collection

Autor korespondujący:
Przemysław Strzelczyk, przemyslawstrzelczyk@gmail.com

Artykuł recenzowany
nadesłany 12.07.2017 r., przyjęty do druku 30.08.2017 r.

Przemysław Strzelczyk, Krzysztof Tomczewski
Opole University of Technology, Department of Electrical Engineering, Automatic Control and Informatics, Prószkowska 76, 45-758 Opole, Poland

Abstract: The paper presents the concept of generic exchange data platform dedicated to distributed
control systems. The platform can be used to control industrial facilities, to synchronize the work
of industrial and mobile robots. The solution can also be applied to active prostheses. The article
presents an example of information exchange subsystem structure as well as data flow between
platform applications.

Keywords: distributed control systems, communication platform, robotic middleware, exoskeleton

Data Exchange Platform Dedicated
to Distributed Control Systems

53

Pomiary Automatyka Robotyka, ISSN 1427-9126, R. 21, Nr 3/2017, 53–62, DOI: 10.14313/PAR_225/53

of functional requirements and on implementing algorithms in
terms of these requirements. Most interfaces defined by the algo-
rithms are strict and narrow to the types they operate on, the
same algorithm can be used against a wide collection of types [8].

The platform is based on intermediary library and layers pre-
paring the environment and executing queries coming from the
library calls. However, the platform software responsible for
this separation has to in some way be associated with selected
operating system. The relationship level is dependent on com-
munication mechanisms built into the operating system itself.
The platform software will include eventually implementation
of dependent snippets for the most popular operating systems.
This will allow to build a software package based on properly
designed shell script program automating compilation process
(make file) on most commonly used operating systems without
the need of additional platform functionality modification (cross
compiling) [1]. A large relationship factor will be determined by
the need of build mentioned mechanisms and direct links with
the hardware. However, system selection without these elements
would be inefficient in terms of time spent on platform adjust-
ment as well as on complementary elements development and
also in terms of performance.

A potential area of use of such a solution may be mobile
robots. The platform can provide the communication between
robots, between the robot and the operator console, but also
between the modules within a single robot. Exemplary applica-
tion of data exchange platform in multi-robot system is shown
in Fig. 2. Planned application of communication platform is data

exchange in scope of complex rehabilitation equipment such as:
active artificial limbs, elements supporting the movement or exo-
skeletons for people partially paralyzed. In such complex systems,
it is advisable to use distributed control systems, with nodes pla-
ced at critical points, such as hip, knee, ankle etc. The platform
allows to drives control, sensors reading etc. These devices are
complex robotic elements. There are close links between variables
articulated values and behavior of the device in the global coordi-
nate system. It is necessary to exchange information between the
individual modules and the central control unit, e.g. in order to
maintain equilibrium, a move and so on. An example structure
of such a system is shown in Fig. 1. An exemplary structure of
module located in the node is shown in Fig. 3.

Platform software adjusts all the functionalities to the new
equipment. If one of communication platform assumption concer-
ning the availability of broadcast or multicast data transferring
to application is present, the software platform will provide the
functionality regardless of hardware or operating system changes
through all further revisions.

3. Structure of the Distributed Control
System

The communication platform allowing to exchange of information
is not necessarily limited to one device. The main task of the
presented concept is the ability to work in distributed systems.
In addition to providing genericness, platform provides the abi-
lity to exchange data between distributed systems components.
The data exchange in such systems should be done in a fast and
reliable way, but with a high security level. Exchange of infor-
mation in distributed systems is an issue that could cause a lot
of problems [5, 6].

The need of transfer confirmation is the basic problem. In
general, the distributed control system may have dynamically
changing number of objects, so it is not possible to adopt a fixed
number of nodes that exist in the system. Node of such a system
is a module on which communication platform was launched
along with control applications that use its functionality. An
example would be a system composed of several mobile robots
where some of them have lost communication with each other.
The number of nodes in the system decreases when layer respon-
sible for the information management concerning the platform
points, notify the lack of response to previously recorded unit.
If new node is detected by the platform, it will be immediately
included in the system and allow applications installed on other
network nodes communicate with the newly discovered object.
The algorithm implemented in the control application will con-
dition kind of interaction between these objects. Exemplary of
the distributed control system structure is shown in Fig. 4. The
example presented in Fig 4. assumes that Wi-Fi/Ethernet stan-
dard has been selected as transmission technology. The topic
of this paper was not the creation of transmission technology
but a platform allowing communication of higher-level applica-
tions. The transmission technology can be freely selected as long

Fig. 1. Sample structure of active prostheses
Rys. 1. Przykładowa struktura aktywnej protezy

Fig. 2. Application of the platform in the mobile robot system
Rys. 2. Zastosowanie platformy w systemie robotów mobilnych

Fig. 3. An example of the structure of the control system of the
kinematic coupling
Rys. 3. Przykład sprzężenia w układzie sterownia kinematycznego

54

Data Exchange Platform Dedicated to Distributed Control Systems

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 3/2017

as the conditions that allow for the correct implementation of
this platform are met (TCP/UDP support). The Wi-Fi/Ether-
net router solution was chosen due to easy access to devices
that support this technology and low configuration complexity.
The Wi-Fi/Ethernet technology was chosen due to Linux built-
-in support. The author recommends using a technology, which
allows avoiding the centralized distribution of information (ad-
-hoc solutions).

4. Data Exchange in the Single Node
of the Platform

Information exchange between applications within a single node
is performed via an intermediate layer of the platform LNCL
(Local Node Communication Layer). This layer is responsi-
ble for packet transport between applications within a single
object. In the case of mobile robots, this kind of communica-
tion is responsible for data exchange between applications run-
ning within single robots. Multiprocessing and multithreading
support are not common solutions in control systems mainly
due to reliability requirements. This library provides the abi-
lity to use information exchange mechanisms also in multi-
-threaded and multi-processed control systems. Proper use of
these mechanisms can lead to significant software performance
improvements especially if hardware platform provides multi-
-core solutions.

Using the supplied API library NodeAPI (RegisterTransport-
Address function) each application can register itself in the
system, and then obtain the unique identifier to allow the
functioning in the entire system. If the operating system allows
the use of multithreading, each thread running in the process
will also have the opportunity to register at least one trans-
port address. This allows the modular software design and the
appropriate segregation of responsibilities. Providing dynamic
registration opportunity to LNCL layer significantly extends
the capabilities of the software running on the platform. Appli-
cations can send data packets to each other knowing only
their TID (Transport ID). Layers such as LNCL have static
addresses. Using of fixed addressing allows for communication
within a single instance of the platform without the use of
additional mechanisms to detect dynamic address of the indivi-
dual layers. It means that, each application run has knowledge
about address using to communicate in advance. Adopted data
transfer mechanism allows to send a package without forward
imposing its size. It was accomplished using a specially prepa-
red header preceding each message. If there would be a need
to send a data structure, transport system has to prepared to
handle a message with defined size properly by calling Cre-
ateMessage function with all relevant information such as the

size of data transferred, the recipient identifier and a pointer
to the data. In case of success function returns a pointer to
the memory, indicating the place where specially prepared
message supplemented with all necessarily data is located to
properly forward by the platform. The returned pointer will
be passed to SendMessage function responsible for sending
pre-prepared package.

Communication within a single instance of the platform has
been implemented using shared memory. (Linux domain soc-
kets) Shared memory was selected because of the transfer per-
formance during exchanging information between processes [2].

5. Data Exchange Between Distributed
Objects

According to the assumptions the platform has also functiona-
lity for data exchange between distributed nodes. Communi-
cation with other objects in each instance is implemented by
means of GNCL layer (Global Node Communication Layer).
GNCL has static address registered in LNCL. Its task is to
transfer information using TCP/IP protocol to other distribu-
ted system modules. The choice of TCP/IP has been dictated
by the need of packet delivery confirmation. Another criterion
of selection was the order of packet delivery. TCP/IP protocol
ensures the order of transmitted packets and their potential
retransmission in case of error. The protocol has also been cho-
sen because the complexity of the platform-based system can
change dynamically in the runtime. The architecture should
allow the creation of simple network as well as a very complex
one. In order to send message, it is necessary to determine the
recipient. Address of the addressee within the software plat-
form is defined using the 64-bit TID. More significant 32 bits
contain the address of the node to which information is addres-
sed. The remaining 32 bits specify the address of an internal
application to which the message is sent. After sending, the
message goes to LNCL, where the transport address analysis
is determined whether this information is local or external. In
case of external message, it will be forwarded directly to GNCL
layer. Next, local GNCL layer forwards the packet to recipient
GNCL, which in turn passes it to the local LNCL then it fur-
ther forwards the packet to target application.

6. Synchronization of Control System
Operation

One of the main problems during development of distributed
systems is the synchronization of processes in local as well as
global scope. Each of nodes has a number of layers required
for correct requests handling connected with offered functiona-
lity. During platform software startup boot order of its indivi-
dual components is extremely important because every booting
layer is dependent on the functionality offered by other layers
[3]. Wrong order or synchronization lack could lead to startup
phase failure or race condition. The first launched and the most
important layer in a scope of single node is LNCL.

Other layers use possibility of data exchange between regi-
stered recipients, so queuing within a single node platform is
extremely important. An example showing such an event in
the global scope can be three platforms nodes layout. The first
acts as a central control unit. The other two are responsible for
determining the position and drive control in two kinematic
connectors of active prostheses. Starting calculations at the
positioning unit in a global scope before properly started unit
responsible for measurement could lead to the designation of
an erroneous initial position. Similarly, transferring information

Fig. 4. An example of the distributed control system structure
Rys. 4. Przykładowa struktura rozproszonego systemu sterowania

55

Przemysław Strzelczyk, Krzysztof Tomczewski

about calculated values of settings to control applications ope-
rating in kinematic joints before their starting would not lead
to a move, which may also affect the further operation. It is
therefore important to maintain sufficient start-up procedure.

ching their answers. Information about system structure change
can be very important, and delivered in a short period of time
allows for the correct response of the entire system.

8. Results of Tests

Testing of described solution is complicated, mainly because
of the distributed structure and the possibility to dynamically
change of system structure. Dedicated environment consisting of
several nodes equipped with communication platform software
has been developed to test the platform assumptions.

The test stand shown in Fig. 7 has been prepared specifi-
cally for the Raspberry Pi hardware modules because thanks
to its low price and wide capabilities it has been chosen as the
main hardware used during platform testing. The test stand
consists of three Raspberry Pi devices connected via MikroTik
Could Router Switch CRS125-24G-1S-2HnD-IN using Ethernet.
The modules are equipped with the Raspbian operating system,
installed and configured data exchange platform software.

Two test scenarios were performed. The first scenario consi-
sted of data exchange within local scope (using LNCL layer).
Two applications dedicated for testing purposes had only been
developed (using C++ language) and each of them was pro-
perly registered in the platform system. The first one perfor-
med as a sender and the second one as a receiver. The single
package sent from application A to application B had a size of
1000 bytes of random data. The test has been carried out 1024
times (Table 1).

The obtained data from first test were statistically analyzed
with the following results: xmin = 0.00042 ms, xmax = 0.00042 ms,

ms04621.01 =x = 0.04621 ms, σ1 = 0.07446.
The second scenario consisted of data exchange using “every-

one to everyone” principle. The test program that sends a 1000
byte packet to the indicated platform nodes and waits for ack-
nowledge from the receiver side was run on each of the Raspberry
Pi modules. The time measurement started when the data set
was sent and finished when the acknowledgment was received.
The acknowledgment had a form of a packet with the same con-
tent as the one sent. The confirmation from the recipient was
necessary because the platform instances work on non time-
-synchronized operating systems. After the measurements are
completed, the result is averaged (Table 2).

Table 1. The results of local exchange data test
Tabela 1. Wyniki testu lokalnej wymiany danych

Packet No.
Transmission

time [ms]
Packet No.

Transmission
time [ms]

Packet No.
Transmission

time [ms]

0 0.06992 8 0.021792 16 0.000427

1 0.043983 9 0.021404 17 0.008648

2 0.023618 10 0.021388 18 0.023158

3 0.022417 11 0.021331 19 0.021553

4 0.02229 12 0.021425 20 0.021509

5 0.021878 13 0.021412 21 0.021364

6 0.021489 14 0.059337 22 0.021401

7 0.023894 15 0.057931 23 0.021306

Fig. 5. Dependencies between communication platform layers
Rys. 5. Zależności między warstwami komunikacyjnymi platformy

Fig. 6. Layer startup structure
Rys. 6. Struktura uruchomieniowa warstwy

Communication between all nodes and their applica-
tions has to be activated as the first. The next step is to
run the measurement and control applications. During
startup, it is necessary to establish star-
ting work conditions of each application.
The implementation of local and global
synchronization manager provided by
the communication platform solves the
problem. Startup synchronization is not
limited to the processes only. Described
communication platform has the ability
to synchronize threads within a process.
Thread synchronization plays a signifi-
cant role during startup of individual
layers e.g. LNCL. Each of layers has
a number of subprograms supporting
functionality offered by the layer. LNCL
layer owns implemented server suppor-
ting any message transmission attempt
in local scope. Creating a new thread
starts the server. Layer cannot mark
itself as started properly if all of its thre-
ads will not achieve the intended point
of execution (in server case, the point is
reached when it is ready to handle inco-
ming connections). An exemplary layer
startup flow is shown in Fig. 5.

7. Automatic Node Detection Mechanism

Depending of the purpose, the structure of a distributed control
system may vary. Sometimes there is a need to change the struc-
ture in already running system. This is important especially in
systems supervising the mobile robots. In many cases, the struc-
ture of the platform may change dynamically.

Thanks to a NDL (Node Discover Layer) it is possible to
detect new appearing objects in the system and monitor the exi-
stence of previously recorded. Standard time in which layer sear-
ches the resources to find new nodes and confirm the existence
of previously recorded ones is 500 ms. The NDL mechanism is
based on UDP protocol and cyclical sending queries and mat-

56

Data Exchange Platform Dedicated to Distributed Control Systems

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 3/2017

Table 2. The results of global exchange data test
Tabela 2. Wyniki testu globalnej wymiany danych

Packet No
Transmission

time [ms]
Packet No. Packet No. Packet No.

Transmission
time [ms]

0 0.5123 8 0.9277 16 0.7821

1 0.4453 9 0.4552 17 0.5242

2 0.7883 10 0.5611 18 0.3451

3 0.4763 11 0.6132 19 0.7481

4 0.4112 12 0.4252 20 0.8512

5 0.6211 13 0.5331 21 0.4625

6 0.8135 14 0.5932 22 0.5162

7 0.7422 15 0.5793 23 0.6821

The obtained data from second test were statistically analyzed
with the following results: xmin = 0.2344 ms, xmax = 0.9277 ms,

ms5526.02 =x ms, σ2 = 0.1574.
The results shown in Table 1. and Table 2. include delays cau-

sed by the operating system scheduler. The next communication
platform releases the priority of the process will be changed. This
procedure will reduce the probability of expropriation.

Fig. 7. Test stand
Rys. 7. Stanowisko testowe

9. Summary

The structure of a platform providing
data exchange options in distributed sys-
tems generates huge opportunities for
expansion of control systems. It remo-
ves system constraints arising from the
location of its elements. The proposed
platform can be successfully used in the
automation and robotics while performing
the tasks associated with the need to col-
lect and exchange information in remote
points. Thanks to its genericness, the plat-
form is largely universal, and applications
based on it are fully cross-platform pro-
grams.

References

1. Wojtczyk M., Knoll A., A Cross
Platform Development Work-
flow for C/C++ Applications, The
third International Conference on

Software Engineering Advances (ICSEA-2008), 2008,
DOI: 10.1109/ICSEA.2008.41.

2. Shapley Gray J., Interprocess Communications in Linux,
ISBN: 0-13-046042-7, Prentice Hall Professional 2003.

3. Itami Y., Ishigooka T., Yokoyama T., A Distributed Com-
puting Environment for Embedded Control Systems with
Time-Triggered and Event-Triggered Processing, 14th
IEEE International Conference on Embedded and Real-
-Time Computing Systems and Applications, 2008,
DOI: 10.1109/RTCSA.2008.38.

4. Wittenmark B., Nilsson J., Torngren M., Timing problems
in real-time control systems, [in:] Proceedings of American
Control Conference 1995, DOI: 10.1109/ACC.1995.531240.

5. Noriaki A., Takashi S., Kosei K., Tetsuo K, Woo-Keun Y.,
RT-Middleware: Distrbiuted Component Middleware for RT
(Robot Technology), IEEE/RSJ International Conference on
Intelligent Robots and Systems 2005,
DOI: 10.1109/IROS.2005.1545521.

6. Volpe R., Nesnas I., Estlin T., Mutz D., Petras R., Das H.,
The CLARAty architecture for robotic autonomy, Proce-
edings of IEEE Aerospace Conf., Montana, March 2001,
DOI: 10.1109/AERO.2001.931701.

7. Ceriani S., Migliavacca M., Middleware in robotics, Internal
Report For „Advanced Methods of Information Technology
for Authonomous Robotics”, Politecnico di Milano.

8. Alexandrescu A., Modern C++ Design: Generic Program-
ming and Design Patterns Applied, ISBN: 978-0201704310,
Addison-Wesley 2011.

9. Elkady A., Sobh T., Robotics Middleware: A Comprehensive
Literature Survey and Attribute-Based Bibliography, Hindawi
Publishing Corporation, “Journal of Robotics”, Vol. 2012,
DOI: 10.1155/2012/959013.

10. Nesnas I.A.D, Wright A., Bajracharya M., Simmons R.,
Estlin T., CLARAty and Challanges od Developing Inte-
roperable Robotic Software, NASA Ames Research Center,
Moffet Field, Sunnyvale, CA 95134 March 2003.

11. Schlegel Ch., Steck A., Brugali D., Knoll A., Design Abs-
traction and Processes in Robotics: From Code-Driven to
Model-Driven Engineering, Technische Universtat Munchen,
Munchen Germany.

12. Ch. Schlegel, Communication Patterns as Key Towards
Component-Based Robotics, Software Engineering for Expe-
rimental Robotics, Springer Tracts in Advanced Robotics,
DOI: 10.5772/5759.

57

Przemysław Strzelczyk, Krzysztof Tomczewski

Streszczenie: Artykuł przedstawia koncepcje generycznej platformy wymiany danych dedykowanej
dla rozproszonych systemów sterowania. Platforma może zostać wykorzystana do sterowania obiektami
przemysłowymi a także do synchronizacji pracy przemysłowych oraz mobilnych robotów. Rozwiązanie
może być również zastosowane w aktywnych protezach. Artykuł prezentuje strukturę podsystemu
wymiany danych oraz opisuje przepływ informacji pomiędzy aplikacjami bazującymi na oprogramowaniu
platformy.

Słowa kluczowe: rozproszone systemy sterowania, platforma komunikacyjna, oprogramowanie pośredniczące, egzoszkielet

Platforma wymiany danych dedykowana dla rozproszonych
systemów sterowania

Krzysztof Tomczewski, PhD DSc
k.tomczewski@po.opole.pl

Opole University of Technology, Faculty
of Electrical Engineering, Automa-
tics and Computer Science Institute
of Power Systems and Robotics, Head
of the Department of Electrical Drives,
Diagnostics and Industrial Electronics.

Przemysław Strzelczyk, MSc Eng.
przemyslawstrzelczyk@gmail.com

PhD candidate at Opole University of
Technology, Faculty of Electrical Engine-
ering, Automatics and Computer Science
field of study – Automatics and Robotics.

58

Data Exchange Platform Dedicated to Distributed Control Systems

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 3/2017

