PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New data on the age of the sedimentary infill of the Orava-Nowy Targ Basin : a case study of the Bystry Stream succession (Middle/Upper Miocene, Western Carpathians)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Neogene sedimentary succession of the Orava-Nowy Targ Basin directly overlies the Central Carpathian Paleogene Basin deposits, the Magura Unit, and the Pieniny Klippen Belt. It provides an excellent geological record that postdates the main Mesoalpine structural and geomorphological processes in the Western Carpathians. Sedimentological, petrographical and geochronological investigations have allowed forthe re-examination of pyroclastic material, zircon dating, and a discussion on the relation of the Orava-Nowy Targ Basin to the exhumation of the Tatra Massif. The Bystry Stream succession is composed of NNW-inclined freshwater siltstones, sandstones and conglomerates. A few small, sometimes discontinuous, light grey intercalations of pyroclastic deposits and a single 1-2 m thick tuffite layer occur in the upper part of the succession. The tuffite contains an admixture of organic matter and siliciclastic grains (e.g., mica), suggesting that the volcanic ash fall was accompanied by normal deposition from weak currents. Sedimentation of deposits of the Bystry Stream succession took place in terrestrial settings, predominantly on floodplains and in rivers, in the vicinity of a hilly area supplying the basin with eroded material. The age of the tuffite layer from the Bystry Stream succession was determined at 11.87 +0.12/-0.24 Ma. The source of volcanogenic material in the tuffite was probably volcanic activity in the Inner Carpathians-Pannonian region, where effusive and volcanoclastic sillca-rich rocks were being produced by extrusive and explosive activity ~12 Ma. Obtained result connects the development of the Orava-Nowy Targ Basin at ~12 Ma with the late stage of the main episode of the Tatra Massif exhumation between ~22-10 Ma.
Rocznik
Strony
327--343
Opis fizyczny
Bibliogr. 87 poz., rys., tab., wykr.
Twórcy
autor
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Oslo, Department of Geosciences, Sem Salands vei 1, 0371 Oslo, Norway
  • Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
  • 1. Anczkiewicz, A.A., Anczkiewicz, R., 2016. U-Pb zircon geochronology and anomalous Sr-Nd-Hf isotope systematics of late orogenic andesites: Pieniny Klippen Belt, Western Carpathians, South Poland. Chemical Geology, 427: 1-16.
  • 2. Anczkiewicz, A.A., Zattin, M., Środoń, J., 2005. Cenozoic uplift of the Tatras and Podhale basin from the perspective of the apatite fission track analyses. Mineralogical Society of Poland - Special Papers, 25: 261-264.
  • 3. Anczkiewicz, A.A., Środoń, J., Zattin, M., 2013. Thermal history of the Podhale Basin in the internal Western Carpathians from the perspective of apatite fission track analyses. Geologica Carpathica, 64: 141-151.
  • 4. Anczkiewicz, A.A., Danišík, M., Środoń, J., 2015. Multiple low-temperature thermochronology constraints on exhumation of the Tatra Mountains: new implication for the complex evolution of the Western Carpathians in the Cenozoic. Tectonics, 34: 2296-2317.
  • 5. Andreucci, B., Castelluccio, A., Jankowski, L., Mazzoli, S., Szaniawski, R., Zattin, M., 2013. Burial and exhumation history of the Polish Outer Carpathians: discriminating the role of thrusting and post-thrusting extension. Tectonophysics, 608: 866-883.
  • 6. Bac-Moszaszwili, M., 1993. Structure of the western termination of the Tatra massif (in Polish with English summary). Annales Societatis Geologorum Poloniae, 63: 167-193.
  • 7. Baumgart-Kotarba, M., 1996. On origin and age of the Orava Basin, West Carpathians. Studia Geomorphologica Carpatho-Balcanica, 30: 101-116.
  • 8. Baumgart-Kotarba, M., 2001. Continuous tectonic evolution of the Orava basin from Late Badenian to the present-day. Geologica Carpathica, 52: 103-110.
  • 9. Baumgart-Kotarba, M., Marcak, H., Márton, E., 2004. Rotation along the transverse transforming Orava strike-slip fault: based on geomorphological, geophysical and paleomagnertic data (Western Carpathians). Geologica Carpathica, 55: 219-226.
  • 10. Beleš, F., 1974. Occurrence of bentonite in the Orava river basin (in Slovak with English summary). Mineralia Slovaca, 6: 155-157.
  • 11. Birkenmajer, K., 1954. Geological investigations of Podhale Neogene (Central Carpathians) (in Polish with English summary). Biuletyn Instytutu Geologicznego, 86: 59-79.
  • 12. Birkenmajer, K., 1978. Neogene to Early Pleistocene subsidence close to the Pieniny Klippen Belt, Polish Carpathians. Studia Geomorphologica Carpatho-Balcanica, 12: 17-28.
  • 13. Birkenmajer, K., 1979. Przewodnik geologiczny po pienińskim pasie skałkowym (in Polish). Wyd. Geol., Warszawa.
  • 14. Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, 64: 450-489.
  • 15. Bojanowski, M.J., Wysocka, A., Łoziński, M., 2014. Methano - genesis-driven formation of siderite concretions and a fresh-water limestone induced by swamp development in the Neogene Orava-Nowy Targ basin. Abstracts book of 19th International Sedimentological Congress, 18-22.08.2014, Geneva, Switzerland,84.
  • 16. Bojanowski, M.J., Jaroszewicz, E., Košir, A., Łoziński, M., Marynowski, L., Wysocka, A., Derkowski, A., 2016. Root-related rhodochrosite and concretionary siderite formation in oxygen-deficient conditions induced by a ground-water table rise. Sedimentology, 63: 523-551.
  • 17. Castelluccio, A., Mazzoli, S., Andreucci, B., Jankowski, L., Szaniawski, R., Zattin, M., 2016. Building and exhumation of the Western Carpathians: new constraints from sequentially restored, balanced cross-sections integrated with low-temperature thermochronometry: Western Carpathians tectonic evolution. Tectonics, 35: 2698-2733.
  • 18. Cieszkowski, M., 1992. Marine Miocene deposits near Nowy Targ, Magura Nappe, Flysch Carpathians (South Poland). Geologica Carpathica, 43: 339-346.
  • 19. Cieszkowski, M., 1995. Marine Miocene deposits close to Nowy Targ and their importance for determining age of the Orava-Nowy Targ Basin (in Polish with English summary). Kwartalnik AgH Geologia, 21: 153-168.
  • 20. Crowell, J.C., Link, M.H., 1982. Geologic History of Ridge Basin, Southern California. Society of Economic Paleontologists and Mineralogists, Dallas, TX, Pacific Section, Field Trip Guidebook.
  • 21. Dott, R.H. Jr., 1964. Wacke, greywacke, and matrix - what approach to immature sandstone classification? Journal of Sedimentary Petrology, 34: 625-632.
  • 22. Folk, R.L., Andrews, P.B., Lewis, D.W., 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics, 13: 937-968.
  • 23. Garecka, M., 2005. Calcareous nannoplankton from the Podhale Flysch (Oligocene-Miocene, Inner Carpathians, Poland). Studia Geologica Polonica, 124: 353-369.
  • 24. Gehrels, G.E., Valencia, V., Pullen, A., 2006. Detrital zircon geochronology by Laser-Ablation Multicollector ICPMS at the Arizona Laser Chron Center. Paleontology Society Papers, 11: 1-10.
  • 25. Gehrels, G.E., Valencia, V., Ruiz, J., 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems, 9: 1-13.
  • 26. Golonka, J., Aleksandrowski, P., Aubrecht, M., Chowaniec, J., Chrustek, M., Cieszkowski, M., Florek, R., Gawęda, A., Jarosiński, M., Kępińska, B., Krobicki, M., Lefeld, J., Lewandowski, M., Marko, F., Michalik, M., Oszczypko, N., Picha, F., Potfaj, M., Słaby, E., Ślączka, A., Stefaniuk, M., Uchman, A., Żelaźniewicz, A., 2005. Orava Deep Drilling Project and the Post Paleogene tectonics of the Carpathians. Annales Societatis Geologorum Poloniae, 75: 211-248.
  • 27. Golonka, J., Picha, F. eds., 2006. The Carpathians and their foreland: geology and hydrocarbon Resources. AAPG Memoir, 84.
  • 28. Guterch, B., Lewandowska-Marciniak, H., Niewiadomski, J., 2005. Earthquakes recorded in Poland along the Pieniny Klippen Belt, Western Carpathians. Acta Geophysica Polonica, 53: 27-45.
  • 29. Jankj, J., Pospíšil, L., Vass, D., 1984. Contribution of remote sensing to the knowledge of West Carapathians structure (in Slovak with English summary). Mineralia Slovaca, 16: 121-137.
  • 30. Kaczmarek, A., Oszczypko-Clowes, M., Cieszkowski, M., 2016. Early Miocene age of Stare Bystre Formation (Magura Nappe, Outer Carpathians, Poland) indicated by the calcareous nannoplankton. Geological Quarterly, 60 (2): 341-354.
  • 31. Kim, Y.S., Peacock, D.C., Sanderson, D.J., 2004. Fault damage zones. Journal of Structural Geology, 26: 503-517.
  • 32. Kołcon, I., Wagner, M., 1991. Brown coal from Neogene sediments of the Orawa-Nowy Targ Basin - petrological study (in Polish with English summary). Geological Quarterly, 35 (3): 305-322.
  • 33. Konečný, V., Kováč, M., Lexa, J., Šefara, J., 2002. Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uptake in the mantle. Egu Stephan Mueller Special Publication Series, 1: 105-123.
  • 34. Kováč, P., Hok, J., 1993. The Central Slovak Fault System: field evidence of a strike-slip. Geologica Carpathica, 44: 155-160.
  • 35. Kováč, M., Nagymarosy, A., Oszczypko, N., Ślączka, A., Csontos, L., Marunteanu, M., Maenco, L., Márton E., 1998. Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. In: Geodynamic Development of the Western Carpathians (ed. M. Rakús): 189-217. Geological Survey of Slovak Republic, Bratislava.
  • 36. Kováč, M., Márton, E., Oszczypko, N., Vojtko, R., Hók, J., Králíková, S., Plašienka, D., Klučiar, T., Hudackova, N., Oszczypko-Clowes, M., 2017. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 155.
  • 37. Králiková, S., Vojtko, R., Sliva, L., Minár, J., Fügenschuh, B., Kováč, M., Hók, J., 2014. Cretaceous-Quaternary tectonic evolution of the Tatra Mts (Western Carpathians): constraints from structural, sedimentary, geomorphological, and fission track data. Geologica Carpathica, 65: 307-326.
  • 38. Kukulak, J., 1999. Orientation of joints and faults in the SE part of the Orawa Depression (in Polish with English summary). Przegląd Geologiczny, 47: 1021-1026.
  • 39. Longiaru, S., 1987. Visual comparators for estimating the degree of sorting from plane and thin section. Journal of Sedimentary Petrology, 57: 791-794.
  • 40. Ludwig, K., 2008. Isoplot 3.6: Berkeley Geochronology Center Special Publication, 4.
  • 41. Ludwig, K.R., Mundil, R., 2002. Extracting reliable U-Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. Geochimica et Cosmochimica Acta, 66 Supplement, 1: 463.
  • 42. Łańcucka-Środoniowa, M., 1965. Palaeobotanical investigations on the Miocene of Southern Poland (in Polish with English summary). Annales de la Société Géologique de Pologne, 33: 129-148.
  • 43. Łoziński, M., Wysocka, A., Ludwiniak, M., 2015. Neogene terrestrial sedimentary environments of the Orava-Nowy Targ Basin: a case study of the Oravica River section near Čimhová, Slovakia. Geological Quarterly, 59 (1): 21-34.
  • 44. Łoziński, M., Ziółkowski, P., Wysocka, A., 2017. Tectono-sedimentary analysis using the anisotropy of magnetic susceptibility: the study of terrestrial and fresh-water Neogene of the Orava Basin. Geologica Carpathica, 68: 479-500.
  • 45. Miall, A.D., 2000. Principles of Sedimentary Basin Analysis. Springer, Berlin.
  • 46. Miall, A.D., 2006. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer, Berlin.
  • 47. McBride, E.F., 1963. A classification of common sandstones. Journal of Sedimentary Petrology, 34: 664-669.
  • 48. Nagy, A., Vass, D., Petrik, F., Pereszlényi, M., 1996. Tectogenesis of the Orava Depression in the light of latest biostratigraphic investigations and organic matter alteration studies. Slovak Geological Magazine, 1/96: 49-58.
  • 49. Nejbert, K., Jurewicz, E., Macdonald, R., 2012. Potassium-rich magmatism in the Western Outer Carpathians: magmagenes is in the transitional zone between the European Plate and Carpathian-Pannonian region. Lithos, 146-147: 34-47.
  • 50. Nilsen, T.H., Sylvester, A.G., 1995. Strike-slip basins. In: Tectonics of Sedimentary Basins (eds. C.J. Busby and R.V. Ingersoll): 425-457. Blackwell, Cambridge.
  • 51. Oszast, J., 1970. On the age of the Domański Wierch Cone determined by palynological methods (in Polish with English summary). Kwartalnik Geologiczny, 14 (4): 843-845.
  • 52. Oszast, J., 1973. The Pliocene profile of Domański Wierch near Czarny Dunajec in the light of palynological investigations (Western Carpathians, Poland). Acta Palaeobotanica, 14: 3-42.
  • 53. Oszast, J., Stuchlik, L., 1977. The Neogene vegetation of the Podhale (West Carpathians, Poland) (in Polish with English summary). Acta Palaeobotanica, 18: 45-86.
  • 54. Oszczypko, N., Oszczypko-Clowes, M., Golonka, J., Marko, F., 2005. Oligocene-Lower Miocene sequences of the Pieniny Klippen Belt and adjacent Magura Nappe between Jarabina and the Poprad River (East Slovakia and South Poland): their tectonic position and palaeogeographic implications. Geological Quarterly, 49 (4): 379-402.
  • 55. Pettijohn, F.J., Potter, P.E., Siever, R., 1972. Sand and Sandstones. Springer, New York.
  • 56. Pécskay, Z., Lexa, J., Szakács, A., Seghedi, I., Balogh, K., Konečny, V., Zelenka, T., Kovacs, M., Póka, T., Fülöp, A., Márton, E., Panaiotu, C., Cvetković, V., 2006. Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Carpathica, 57: 511-530.
  • 57. Picard, M.D., 1971. Classification of fine-grained sedimentary rocks. Journal of Sedimentary Petrology, 41: 179-195.
  • 58. Piller, W.E., Harzhauser, M., Mandic, O., 2007. Miocene Central Paratethys stratigraphy-current status and future directions. Stratigraphy, 4: 151-168.
  • 59. Pin, C., Bouvier, A., Aleksandrowski, P., 2004. Major trace element and Sr-Nd isotope data on Neogene andesitic rocks from the Pieniny Klippen Belt (southern Poland) and geodynamic inferences. Mineralogical Society of Poland-Special Paper, 24: 323-328.
  • 60. Pomianowski, P., 2003. Tectonics of the Orava-Nowy Targ Basin - results of the combined analysis of the gravity and geoelectrical data (in Polish with English summary). Przegląd Geologiczny, 51: 498-506.
  • 61. Pospíšil, L., 1990. The present possibilities of identification of shear zones in the area of the West Carpathians (in Slovak with English summary). Mineralia Slovaca, 22: 19-31.
  • 62. Pouchou, J.L., Pichoir, F., Boivin, D., 1990. XPP procedure applied to quantitative EDS X-ray analysis in the SEM. In: Microbeam Analysis (eds. J.R. Michael and P. Ingram): 120-126. San Francisco Press, San Francisco.
  • 63. Powers, M.C., 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology, 23: 117-119.
  • 64. Raciborski, M., 1892. Zapiski paleobotaniczne. Kosmos, Lwów, 17: 526.
  • 65. Roth, Z., Benešová, E., Čechovič, V., Eliáš, M., Hanzlíková, E., Chmelík, F., Matějka, A., Pícha, F., 1963. Vysvetlivky k prehladnej geologickej mape ČSSR 1:200 000, M-34-XX Trstená (in Slovak). Geofond, Bratislava.
  • 66. Sikora, W., Wieser, T., 1974. Utwory piroklastyczne w utworach neogeńskich śródgórskiej niecki Orawy-Nowego Targu (in Polish). Kwartalnik Geologiczny, 18 (2): 441-443.
  • 67. Sperner, B., Ratsbacher, L., Nemčok, M., 2002. Interplay between subduction retreat and lateral extrusion: Tectonics of the Western Carpathians. Tectonics, 21: 1051-1075.
  • 68. Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26: 207-221.
  • 69. Struska, M., 2008. Neogeńsko-czwartorzędowy rozwój strukturalny Kotliny Orawskiej w świetle badań geologicznych, geomorfologicznych oraz teledetekcyjnych (in Polish). Ph.D. thesis, Wydział Geologii, Geofizyki i Ochrony Środowiska, Akademia Górniczo-Hutnicza, Kraków.
  • 70. Śmigielski, M., Sinclair, H.D., Stuart, F.M., Persano, C., Krzywiec, P., 2016. Exhumation history of the Tatry Mountains, Western Carpathians, constrained by low temperature termochronology. Tectonics, 35: 187-207.
  • 71. Środoń, J., Clauer, N., Banaś, M., Wójtowicz, A., 2006. K-Ar evidence for a Mesozoic thermal event superimposed on burial diagenesis of the Upper Silesia Coal Basin. Clay Minerals, 41: 671-692.
  • 72. Tokarski, A.K., Zuchiewicz, W., 1998. Fractured clasts in the Domański Wierch series: contribution to structural evolution of the Orava Basin (Carpathians, Poland) during Neogene through Quaternary times (in Polish with English summary). Przegląd Geologiczny, 46: 62-66.
  • 73. Tokarski, A.K., Świerczewska, A., Zuchiewicz, W., Starek, D., Fodor, L., 2012. Quaternary exhumation of the Carpathians: a record from the Orava-Nowy Targ Intramontane Basin, Western Carpathians (Poland and Slovakia). Geologica Carpathica, 63: 257-266.
  • 74. Tokarski, A.K., Márton, E., Świerczewska, A., Fheed, A., Zasadni, J., Kukulak, J., 2016. Neotectonic rotations in the Orava-Nowy Targ Intramontane Basin (Western Carpathians): an integrated palaeomagnetic and fractured clasts study. Tectonophysics, 685: 35-43.
  • 75. Trua, T., Serri, G., Birkenmajer, K., Pécskay, Z., 2006. Geochemical and Sr-Nd-Pb isotopic compositions of Mts Pieniny dykes and sills (West Carpathians): evidence for melting in the lithospheric mantle. Lithos, 90: 57-76.
  • 76. Urbaniak, J., 1960. The bore-hole at Domański Wierch, near Czarny Dunajec, Podhale area (in Polish with English summary). Kwartalnik Geologiczny, 4 (3): 787-799.
  • 77. Watycha, L., 1976. The Neogene of the Orava-Nowy Targ Basin (in Polish with English summary). Kwartalnik Geologiczny, 20 (4): 575-585.
  • 78. Watycha, L., 1977. Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50,000, arkusz Czarny Dunajec (1048) (in Polish). Polish Geol. Inst., Warsaw.
  • 79. Westwalewicz-Mogilska, E., 1974. Tuffite in the Neogene molasse of the Domański Wierch alluvial cone. Bulletin of the Polish Academy of Sciences, Earth Sciences, 22: 173-178.
  • 80. Wetzel, A., Einsele, G., 1991. On the physical weathering of various mudrocks. Bulletin of the International Association of Engineering Geology, 44: 89-100.
  • 81. Wieser, T., 1985. Teschenite formation and other evidences of magmatic activity in the Polish Flysch Carpathians and their geotectonic and stratigraphic significance. In: Fundamental Researches in the Western Part of the Polish Carpathians. Guide to excursion 1, Geol. Inst. Poland: 23-36.
  • 82. Williams, H., Turner, F.J., Gilbert, C.M., 1982. Petrography, an Introduction to the Study of Rocks in Thin Sections, 2nd ed. Freeman, W.H. San Francisco, CA.
  • 83. Worobiec, G., 1994. Upper Miocene fossil plants from the outcrop of Stare Bystre (Western Carpathians, Poland). Acta Palaeobotanica, 34: 83-105.
  • 84. Woźny, E., 1976. Stratigraphy of the Younger Tertiary in the Orawa-Nowy Targ Basin on the basis of fresh-water and continental macrofaunal (in Polish with English summary). Kwartalnik Geologiczny, 20 (3): 589-595.
  • 85. Wysocka, A., Świerczewska, A., 2003. Alluvial deposits from the strike-slip fault Lo River Basin (Oligocene/Miocene), Red River Fault Zone, north-western Vietnam. Journal of Asian Earth Sciences, 21: 1097-1112.
  • 86. Zastawniak, E., 1972. Pliocene leaf flora from Domański Wierch near Czarny Dunajec, Western Carpathians, Poland. Acta Palaeobotanica, 13: 1-73.
  • 87. Zingg, T., 1935. Beiträge zur Schotteranalyse. Schweizerische Mineralogische und Petrographische Mitteilungen, 15 : 39-140.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00240ec7-42bb-41e8-bfcd-0cf7b9b412fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.