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Formulas for the slowness of Stoneley waves with sliding contact
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The main aim of this paper is to derive formulas for the slowness of Stoneley
waves traveling along the sliding interface of two isotropic elastic half-spaces. These
formulas have been obtained by employing the complex function method. From the
derivation of them, it is shown that if a Stoneley wave exists, it is unique. Based on
the obtained formulas, it is proved that a Stoneley wave is always possible for two
isotropic elastic half-spaces with the same bulk wave velocities. This result leads to
the fact that a Stoneley wave is always possible for two elastic half-spaces satisfying
the Wiechert condition, a condition that plays an important role in acoustic analyses.
The obtained formulas are of theoretical interest and they will be useful in practical
applications, especially in nondestructive evaluations.
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1. Introduction

Stoneley waves that propagate along an interface of two dissimilar
elastic half-spaces and decay from the interface were first investigated by Stone-

ley [1] in 1924 for the case when the half-spaces are isotropic and in welded con-
tact. He derived the existence condition (secular equation) for a Stoneley wave
and based on it he showed that such an interfacial wave does not always exist.
Following him, Sezawa and Kanai [2] and Scholte [3, 4] investigated domains
of existence and indicated that the restrictions on material constants that per-
mit the existence of Stoneley waves are rather severe. However, it was proved by
Vinh et al. [5] that a Stoneley wave is always possible for two isotropic elastic
half-spaces with the same bulk wave velocities. Considering the propagation of
Stoneley waves in the vicinity of Wiechert condition [6], Ilyashenko [7] asserted
that the existence domain of Stoneley waves is not simply connected. As at the
Wiechert condition two bulk wave velocities of two isotropic elastic half-spaces
are equal to each other, there always exists a Stoneley wave propagating along
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the interface of two Wiechert-half-spaces, according to Vinh et al. [5]. Stoneley
waves in generally anisotropic solids were investigated by Stroh [8], Barnett

et al. [9]. Barnett et al. [9] established a definite existence criterion and proved
the uniqueness of Stoneley waves using the surface impedance matrix method.
The propagation of Stoneley waves in pre-stressed elastic half-spaces was studied
by Chadwick and Jarvis [10, 11], Dasgupta [12], Dunwoody [13], Dowaikh

and Ogden [14], Vinh and Giang [15]. In the above mentioned investigations,
the contact of two half-spaces is perfectly bonded. Stoneley waves propagating
along sliding interfaces were investigated by Murty [16], Vinh and Giang [17]
for the isotropic case, by Barnett et al. [18] for the anisotropic case. Barnett

et al. [18] showed that for the isotropic elastic half-spaces, if a Stoneley wave ex-
ists, then it is unique. However, for the anisotropic half-spaces, a new slip-wave
mode is possible.

For Stoneley waves, their velocity and slowness are fundamental quantities
which interest researchers in seismology, geophysics, material sciences and other
fields of physics. Since Green’s function for many elastodynamic problems for
two dissimilar elastic half-space involves the solution of the secular equation
of Stoneley waves [19], formulas for the Stoneley wave velocity and slowness are
of practical as well as theoretical interest. They are also a powerful tool for solving
the inverse problems: determining material parameters of elastic half-spaces from
measured values of the wave velocity or slowness of Stoneley waves. By using the
complex function method, formulas for the velocity and slowness were derived by
Vinh et al. [5] for Stoneley waves traveling along the welded interface between
two isotropic elastic half-spaces with the same bulk wave velocities, by Vinh [20]
for Stoneley waves propagating along the interface between an isotropic elastic
half-space and a fluid half-space (Scholte waves). The formulas for the velocity
of Stoneley waves in two isotropic elastic half-spaces with sliding contact were
obtained by Vinh and Giang [17]. However, those for the wave slowness have
not appeared in the literature.

In this paper, we establish formulas for the slowness of Stoneley waves travel-
ing along the sliding interface of two isotropic elastic half-spaces. These formulas
have been derived by employing the complex function method. First, the (tran-
scendental) real secular equation for the wave slowness is written in the complex
form. Then, this equation is proved to be equivalent to a (complex) quadratic
equation using the complex function method. The formulas for the wave slowness
is derived by solving this quadratic equation. It is noted that, in order to obtain
the formula for the wave velocity, Vinh and Giang [17] have to solve a complex
cubic equation.

From the derivation of the wave slowness formulas, it is proved that if a Stone-
ley wave exists, then it is unique. Applying the obtained formulas, it has been
proved that for two isotropic elastic half-spaces with sliding contact and having
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the same bulk wave velocities, a Stoneley wave is always possible. This result is
in accordance with the conclusion made by Barnett et al. [18]. It also provides
the fact that a Stoneley wave is always possible for two elastic half-spaces with
sliding contact and satisfying the Wiechert condition [6], a condition that plays
an important role in acoustic analyses [7].

2. Secular equation

In this section we show briefly the derivation of the secular equation of
Stoneley waves propagating along the sliding interface of two isotropic elastic
half-spaces. For details, the reader is referred to the paper by Murty [16].

Let us consider two isotropic elastic solids Ω and Ω∗ occupying the half-space
x2 ≥ 0 and x2 ≤ 0, respectively. The same quantities related to Ω and Ω∗ have
the same symbol but are systematically distinguished by an asterisk if pertaining
to Ω∗. Suppose that these two elastic half-spaces are in sliding contact with each
other at the plane x2 = 0 (see [16, 21]). In particular, the normal component of
the particle displacement vector and the normal component of the stress tensor
are continuous, while the shearing stress vanishes across the interface x2 = 0,
i.e.:

(2.1) u2 = u∗
2, σ22 = σ∗

22, σ12 = σ∗
12 = 0 at x2 = 0.

Consider the propagation of a plane wave, traveling with velocity c ( > 0)
and wave number k ( > 0) in the x1-direction, being mostly confined to the
neighbourhood of the interface x2 = 0. Then the displacement components u1,
u2, u3 (corresponding to Ω) are given by [17]:

u1 = (Q1e
−kb1x2 + Q2e

−kb2x2)eik(x1−ct),

u2 =

(

−b1

i
Q1e

−kb1x2 +
i

b2
Q2e

−kb2x2

)

eik(x1−ct),(2.2)

u3 ≡ 0

where Q1, Q2 are constants to be determined, and:

b1 =

√

1 − c2

c2
L

, b2 =

√

1 − c2

c2
T

,

cL =
√

(λ + 2µ)/ρ and cT =
√

µ/ρ denote speed of the longitudinal wave and
the transverse wave, respectively, of the half-space Ω, λ and µ are usual Lame
constants. Similarly, for Ω∗ the displacement components u∗

1, u∗
2, u∗

3 are expressed
by [17]:
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u∗
1 = (Q∗

1e
kb∗1x2 + Q∗

2e
kb∗2x2)eik(x1−ct),

u∗
2 =

(

b∗1
i

Q∗
1e

kb∗1x2 − i

b∗2
Q∗

2e
kb∗2x2

)

eik(x1−ct),(2.3)

u∗
3 ≡ 0

where Q∗
1, Q∗

2 are constants to be determined, and:

b∗1 =

√

1 − c2

c∗2L

, b∗2 =

√

1 − c2

c∗2T

,

c∗L =
√

(λ∗ + 2µ∗)/ρ∗ and c∗T =
√

µ∗/ρ∗ denote speed of the longitudinal wave
and the transverse wave, respectively, of the half-space Ω∗. It is not difficult to
check that:

Proposition 1. If a Stoneley wave exists, then its velocity is subject to:

(2.4) 0 < c < min{cT , c∗T }.

The inequalities (2.4) ensure that bk, b∗k (k = 1, 2) are strictly positive, the
decay conditions are therefore satisfied. Introducing (2.2), (2.3) into (2.1) with
noting that (commas indicate the differentiation with respect to xk):

σ12 = µ(u1,2 + u2,1), σ22 = λ(u1,1 + u2,2) + 2µu2,2,

σ∗
12 = µ∗(u∗

1,2 + u∗
2,1), σ∗

22 = λ∗(u∗
1,1 + u∗

2,2) + 2µ∗u∗
2,2

yields a system of four homogeneous linear equations for Q1, Q2, Q∗
1, Q∗

2, and
making zero the determinant of matrix of coefficients of this system gives:

(2.5) c4
T

[

4
√

1 − c2

c2T

√

1 − c2

c2L
− (2 − c2

c2T
)2

]

√

1 − c2

c2L

+
ρ∗

ρ
c∗4T

[

4
√

1 − c2

c∗2L

√

1 − c2

c∗2T
−

(

2 − c2

c∗2T

)2]

√

1 − c2

c∗2L

= 0.

Equation (2.5) is the secular equation of the Stoneley wave that coincides with
the one derived by Murty [16, 21]. It is clear that (2.4) and (2.5) are the
necessary condition for the existence of a Stoneley wave. It is not difficult to
show that they are also the sufficient condition. Thus we have:

Proposition 2. For a Stoneley wave to exist, it is necessary and sufficient

that (2.4) and (2.5) are both satisfied.
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3. Formulas for the slowness of Stoneley waves

In this section we establish formulas for the Stoneley wave slowness y =
c2
T /c2. Without loss of generality we can suppose that cT ≤ c∗T . We introduce

dimensionless parameters:

(3.1) B =
c2
T

c∗2T

, D =
ρ

ρ∗
, F =

c2
T

c∗2L

, E =
c2
T

c2
L

.

With the assumption cT ≤ c∗T (⇒ B ≤ 1) and the facts cT < cL (⇒ E < 1) and
c∗T < c∗L (⇒ F < B), we have 3 different cases (of relative order of 1, B, E, F ):

Case 1: 1 ≥ B ≥ E ≥ F > 0.
Case 2: 1 ≥ B > F ≥ E > 0.
Case 3: 1 > E ≥ B > F > 0.

In terms of dimensionless parameters (3.1), Eq. (2.5) is of the form:

(3.2) (2y − 1)2(y − F )1/2 − 4y(y − 1)1/2(y − E)1/2(y − F )1/2

+
1

DB2

[

(2y − B)2(y − E)1/2 − 4y(y − B)1/2(y − F )1/2(y − E)1/2] = 0.

Due to (2.4) we have:

(3.3) y > 1.

Suppose that there exists a Stoneley wave. Then, Eq. (3.2) has a real root that
satisfies the inequality (3.3). In order to obtain formulas for the Stoneley wave
slowness, we have to find analytical expressions of real roots bigger than 1 of
Eq. (3.2). Since to this end we will apply the complex function method, we now
consider Eq. (3.2) in the complex plane C:

(3.4) (2z − 1)2
√

z − F − 4z
√

z − 1
√

z − E
√

z − F

+
1

DB2

[

(2z − B)2
√

z − E − 4z
√

z − B
√

z − F
√

z − E
]

= 0

where
√

z − 1,
√

z − B,
√

z − E,
√

z − F are chosen as the principal branches of
the corresponding square roots. Equation (3.4) coincides with Eq. (3.2) for real
values of z bigger than 1. Our task now is to find real roots bigger than 1 of the
complex Eq. (3.4). Multiplying two sides of (3.4) by

√
z − 1 yields equation:

(3.5) f(z) =: (2z − 1)2
√

z − 1
√

z − F + 4z(1 − z)
√

z − F
√

z − E

+
1

DB2

[

(2z − B)2
√

z − 1
√

z − E − 4z
√

z − 1
√

z − F
√

z − B
√

z − E
]

= 0.

As Eq. (3.5) is equivalent to Eq. (3.4) in the domain z ∈ R : z > 1, to obtain
formulas for the Stoneley wave slowness we need to find expressions of real roots
bigger than 1 of Eq. (3.5).
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3.1. Case 1: 1 ≥ B ≥ E ≥ F > 0

Case 1.1: 1 > B > E > F > 0.

Theorem 1. Let 1 > B > E > F . If a Stoneley wave exists, then it is

unique, and its slowness ys = c2
T /c2 is defined by:

(3.6) ys = −A1

A2
− 1

2
(F + E) − Î0

where A1, A2 given by:

(3.7)
A1 =

2B(1+E−F )+F (F−2E−2)+B2[3+D(5+E2+2F−2E(2+F ))]

2DB2
,

A2 =
2[DB2(E−1)+F−B]

DB2
,

and

(3.8) Î0 =
1

π

(

−
E

∫

F

θ1(t) dt +

B
∫

E

θ2(t) dt +

1
∫

B

θ3(t) dt

)

,

where

(3.9) θk(t) = atanϕk(t), k = 1, 2, 3,

in which:

ϕ1(t) =

[

− 1

DB2
(2t−B)2

√
E−t

]

/
{

(2t−1)2
√

t−F(3.10)

+
4t

DB2

√
t−F

√
E−t

√
B−t+4t

√
1−t

√
E−t

√
t−F

}

,

ϕ2(t) =
(2t−1)2

√
t−F+

(2t−B)2

DB2

√
t−E

4t

DB2

√
t−F

√
t−E

√
B−t+4t

√
1−t

√
t−E

√
t−F

,(3.11)

ϕ3(t) =
(2t−1)2

√
t−F+

(2t−B)2

DB2

√
t−E− 4t

DB2

√
t−F

√
t−E

√
t−B

4t
√

1−t
√

t−E
√

t−F
.(3.12)

Proof: Denote L = L1 ∪ L2 ∪ L3 with L1 = [F, E], L2 = [E, B], L3 = [B, 1],
S = {z ∈ C, z /∈ L}, N(z0) = {z ∈ S : 0 < |z − z0| < ε}, ε is a sufficiently small
positive number, z0 is some point of the complex plane C. If a function φ(z) is
holomorphic in Ω ⊂ C we write φ(z) ∈ H(Ω). From (3.5) it is not difficult to
show that the function f(z) has the properties:
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(f1) f(z) ∈ H(S),

(f2) f(z) is bounded in N(F ) and N(1),

(f3) f(z) = O(z2) as |z| → ∞,

(f4) f(z) is continuous on L from the left and from the right with the boundary
values f+(t) (the right boundary value of f(z)), f−(t) (the left boundary
value of f(z)) defined as follows:

(3.13) f±(t) =











f±
1 (t), t ∈ L1,

f±
2 (t), t ∈ L2,

f±
3 (t), t ∈ L3

where:

f−
k (t) = f+

k (t), k = 1, 2, 3,(3.14)

f+
1 (t) = i

[

(2t−1)2
√

1−t
√

t−F+
4t

DB2

√
1−t

√
t−F

√
E−t

√
B−t(3.15)

+4t(1−t)
√

E−t
√

t−F
]

− (2t−B)2

DB2

√
1−t

√
E−t,

f+
2 (t) = i

[

(2t−1)2
√

1−t
√

t−F+
(2t−B)2

DB2

√
1−t

√
t−E

]

(3.16)

+
4t

DB2

√
1−t

√
t−F

√
t−E

√
B−t+4t(1−t)

√
t−E

√
t−F ,

f+
3 (t) = i

[

(2t−1)2
√

1−t
√

t−F+
(2t−B)2

DB2

√
1−t

√
t−E(3.17)

− 4t

DB2

√
1−t

√
t−F

√
t−E

√
t−B

]

+4t(1−t)
√

t−E
√

t−F.

Note that f+
k (t) (f−

k (t)) is the right (left) boundary value of f(z) on Lk and
i =

√
−1. Now we introduce function g(t) (t ∈ L):

(3.18) g(t) =







































f+
1 (t)

f−
1 (t)

, t ∈ L1,

f+
2 (t)

f−
2 (t)

, t ∈ L2,

f+
3 (t)

f−
3 (t)

, t ∈ L3.

From (3.13) and (3.18) it is clear that:

(3.19) f+(t) = g(t)f−(t), t ∈ L.
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Consider the function Γ(z) defined as:

(3.20) Γ(z) =
1

2πi

∫

L

logg(t)

t − z
dt.

It is not difficult to verify that

(γ1) Γ(z) ∈ H(S),

(γ2) Γ(∞) = 0,

(γ3) Γ(z) = −(1/2) log(z−1)+Ω0(z) z ∈ N(1), Γ(z) = Ω1(z), z ∈ N(F ) where
Ω0(z) (Ω1(z)) bounded in N(1) (N(F )) and takes a defined value at z = 1
(z = F ).

It is noted that (γ3) comes from the fact (see [22, Chap. 4, Section 29]):

(3.21) log g(F ) = 0, log g(1) = −iπ.

Introduce a new function Φ(z) defined by:

(3.22) Φ(z) = expΓ(z)

it is implied from (γ1)–(γ3) that:

(φ1) Φ(z) ∈ H(S),

(φ2) Φ(z) 6= 0 ∀z ∈ S,

(φ3) Φ(z) = O(1) as |z| → ∞,

(φ4) Φ(z) = (z − 1)−1/2 expΩ0(z) for z ∈ N(1), Φ(z) = expΩ1(z), z ∈ N(F ).

From the Plemelj formula [22], the function Φ(z) is seen directly to satisfy the
boundary condition:

(3.23) Φ+(t) = g(t)Φ−(t), t ∈ L.

We now consider the function Y (z) defined by:

(3.24) Y (z) = f(z)/Φ(z).

From (f1)–(f3), (3.19), (φ1)–(φ4) and (3.24), it follows that:

(y1) Y (z) ∈ H(S),

(y2) Y (z) = O(z2) as |z| → ∞,
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(y3) Y (z) is bounded in N(1) and N(F ),

(y4) Y +(t) = Y −(t), t ∈ L.

Properties (y1) and (y4) of the function Y (z) show that Y (z) is holomorphic in
entire complex plane C, with the possible exception of points: z = 1 and z = F .
By (y3) these points are removable singularity points and it may be assumed
that the function Y (z) is holomorphic in the entire complex plane C (see [23]).
Thus, by the generalized Liouville theorem [23] and taking into account (y2) we
have:

(3.25) Y (z) = P (z)

where P (z) is a polynomial of order 2.
From (3.24) and (3.25) we have:

(3.26) f(z) = Φ(z)P (z).

Since Φ(z) 6= 0 ∀z ∈ S (by (φ2)), and Φ(F ) 6= 0 (by (φ4)), from (3.26) we deduce:

f(z) = 0 ↔ P (z) = 0 in S ∪ {F}.

As Φ(z) → ∞ as z → 1 (by (φ4)), from (3.26): if f(1) = 0 ⇒ P (1) = 0. Suppose
P (1) = 0 ⇒ P (z) = z0(z− 1)(z− z1) because P (z) is a second-order polynomial
(z0 6= 0 and z1 are some complex constants). From this fact, (φ4) and Eq. (3.26)
it follows f(1) = 0. Thus, we have:

(3.27) f(z) = 0 ↔ P (z) = 0 in S ∪ {F} ∪ {1}.

In view of (3.27), instead of finding zeros of f(z) we now looking for two zeros
of the second-order polynomial P (z) that may be an easier task. In order to do
that, first we have to determine P (z). It should be noted that equation f(z) = 0
has no solutions in the interval (F, 1) because of its discontinuity on this interval.
From (3.22) and (3.26) we have:

(3.28) P (z) = f(z)e−Γ(z).

From (3.14)–(3.18) it follows:

(3.29) log g(t) = iφ(t) − 2πi, φ(t) =: Arg g(t)

where:

(3.30) φ(t) =











φ1(t), t ∈ L1,

φ2(t), t ∈ L2,

φ3(t), t ∈ L3,
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and

(3.31) φ1(t) = π − 2θ1(t), φ2(t) = 2θ2(t), φ3(t) = 2θ3(t)

where θk(t) (k = 1, 2, 3) are given by (3.9)–(3.12). From (3.20) and (3.29) it
follows (see also [24]):

(3.32) −Γ(z) =
∞

∑

n=0

In

zn+1

in which:

(3.33) In =
1

2π

1
∫

F

tnφ̂(t) dt, n = 0, 1, . . . , φ̂(t) = φ(t) − 2π.

On use of (3.32) we can express e−Γ(z) as follow:

(3.34) e−Γ(z) = 1 +
a1

z
+

a2

z2
+

a3

z3
+ O(z−4)

where a1, a2, a3 are constants to be determined. Employing the identify

(3.35) (e−Γ(z))′ = (−Γ(z))′e−Γ(z)

and substituting (3.32), (3.34) into (3.35) provide:

a1 = I0, a2 =
I2
0

2
+ I1, a3 =

I3
0

6
+ I1I0 + I2.(3.36)

By expanding
√

z − 1,
√

z − B,
√

z − E,
√

z − F into Laurent series at infinity,
it is not difficult to verify that:

(3.37) f(z) = A2z
2 + A1z + A0 + O(z−1)

where A1 and A2 are calculated by (3.7). Substituting (3.34) and (3.37) into
(3.28) yields:

(3.38) P (z) = A2z
2 + (a1A2 + A1)z + a2A2 + a1A1 + A0.

It is clear from (3.5) that f(1) = 0, hence by (3.27):

(3.39) P (1) = 0.

On use of (3.38), (3.39) and taking into account the first of (3.36) and (3.33)
with n = 0, it is easy to see that the second root of the equation P (z) = 0,
denoted by ys, is given by (3.6).
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Now we suppose there exists a Stoneley wave. Then the equation f(z) = 0
has a real root bigger than 1, denoted by ys. Due to (3.27): P (ys) = 0. Since
ys > 1 and (3.39), ys is the second root of the equation P (z) = 0, given by (3.6).
That means the slowness of the Stoneley wave, say ys, is calculated by (3.6).

If there exist two Stoneley waves, then the equation f(z) = 0 has two distinct

real roots y
(1)
s and y

(2)
s which are both bigger than 1. It follows from (3.27) and

(3.39) that the second-order polynomial P (z) has three different zeros. But this
is impossible. Therefore, if a Stoneley wave exists, then it is unique. The proof
of Theorem 1 is completed.

Now we consider the special cases when at least one of the inequalities
1 > B > E > F is replaced by an equality. There exist only three following
possibilities (noting that B > F, E < 1):

Case 1.2: 1 = B > E > F > 0.
Case 1.3: 1 > B = E > F > 0.
Case 1.4: 1 = B > E = F > 0.

The results of these special cases are deduced directly from the ones of the case
1.1 by taking B = 1 for the case 1.2, B = E for the case 1.3 and B = 1 and
E = F for the case 1.4.

For checking the obtained formula, a number of numerical values of the Stone-
ley wave slowness are calculated by using the formula (3.6) (denoted by ys) and
by solving directly the secular equation (3.2) in the domain y > 1 (denoted by
y∗). It is seen from Table 1 that they are the same. They are also identical to the
corresponding values of 1/xs, where xs is the Stoneley wave velocity calculated
by Eq. (24) in [17].

Table 1. Some values of the Stoneley wave slowness computed by using formula
(3.6) (denoted by ys) and by directly solving Eq. (3.2) (denoted by y∗).

F ; E; B; D 1/6; 1/3; 1/2; 3.4 0.6; 0.7; 0.8; 0.5 0.2; 0.4; 0.6; 3.3 0.2; 0.35; 0.7; 2.5

y∗ 1.0546 1.7281 1.0959 1.0866

ys 1.0546 1.7281 1.0959 1.0866

1/xs 1.0546 1.7281 1.0959 1.0866

3.2. Case 2: 1 ≥ B > F ≥ E > 0

Case 2.1: 1 > B > F > E > 0. Following the same procedure carried out for
the case 1.1 we have:

Theorem 2. Let 1 > B > F > E. If a Stoneley wave exists, then it is

unique, and its slowness ys = c2
T /c2 is defined by (3.6) in which A1, A2 given by
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(3.7) and Î0 is defined as:

(3.40) Î0 =
1

π

(

−
F

∫

E

θ1(t) dt +

B
∫

F

θ2(t) dt +

1
∫

B

θ3(t) dt

)

where θk(t) are computed by (3.9) in which ϕk(t) (k = 2, 3) are given by (3.11),
(3.12) and

(3.41) ϕ1(t) = −(2t − 1)2
√

F − t/

{[

1

DB2
(2t − B)2 + 4t

√
1 − t

√
F − t

+
4t

DB2

√
F − t

√
B − t

]√
t − E

}

.

Case 2.2:. 1 = B > F > E > 0. The result for this case is also derived
directly from the one for the case 2.1 by taking B = 1.

Table 2. Some values of the Stoneley wave slowness computed by using formula
(3.6) (denoted by ys) and by solving directly Eq. (3.2) (denoted by y∗).

E; F ; B; D 0.25; 0.45; 0.7; 3.0 0.25; 0.4; 0.6; 3.0 0.2; 0.45; 0.8; 3.2 0.4; 0.5; 0.7; 0.6

y∗ 1.1449 1.1306 1.1328 1.2646

ys 1.1449 1.1306 1.1328 1.2646

1/xs 1.1449 1.1306 1.1328 1.2646

Table 2 shows that the Stoneley wave slownesses computed by using the
formula (3.6) are identical to the ones obtained by solving directly the secular
equation (3.2), and they coincide with the corresponding values of 1/xs, where
xs is the Stoneley wave velocity calculated by Eq. (60) in [17].

3.3. Case 3: 1 > E ≥ B > F > 0

Note that, the case when B = E has been considered already above (case 1.3),
thus we need to examine here only the case: 1 > E > B > F > 0.

Following the same procedure used for the case 1.1 we have:

Theorem 3. Suppose that 1 > E > B > F . If a Stoneley wave exists, then it

is unique, and its slowness ys = c2
T /c2 is defined by (3.6) in which A1, A2 given

by (3.7) and:

(3.42) Î0 =
1

π

(

−
B

∫

F

θ1(t) dt −
E

∫

B

θ2(t) dt +

1
∫

E

θ3(t) dt

)



Formulas for the slowness of Stoneley waves. . . 477

where θk(t) are given by (3.9) in which ϕk(t) (k = 1, 3) defined by (3.10), (3.12)
and

(3.43) ϕ2(t) =

1

DB2

√
E − t

(

4t
√

t − F
√

t − B − (2t − B)2
)

(2t − 1)2
√

t − F + 4t
√

1 − t
√

E − t
√

t − F
.

Table 3. Some values of the Stoneley wave slowness calculated by using formula
(3.6) (denoted by ys) and by solving directly Eq. (3.2) (denoted by y∗).

F ; B; E; D 0.2; 0.4; 0.6; 3.0 0.15; 0.35; 0.5; 3.2 0.15; 0.3; 0.7; 3.0 0.6; 0.7; 0.9; 0.8

y∗ 1.1240 1.0446 1.1067 3.2322

ys 1.1240 1.0446 1.1067 3.2322

1/xs 1.1240 1.0446 1.1067 3.2322

It is seen from Table 3 that the formula (3.6) and the secular equation (3.2)
give the same Stoneley wave slownesses and they are identical to the correspond-
ing values of 1/xs, where xs is the Stoneley wave velocity calculated by Eq. (65)
in [17].

4. Stoneley waves in two half-spaces with the same bulk wave velocities

Suppose two half-spaces have the same bulk wave velocities, that means
cT = c∗T and cL = c∗L. With this assumption, it follows from (3.1): B = 1 and
F = E (= c2

T /c2
L). This case is the case 1.4, a special case of the case 1.

Theorem 4.

(i) There always exists a Stoneley wave that travels along the sliding interface

between two isotropic half-spaces with the same bulk wave velocities.

(ii) Its slowness is calculated by:

(4.1) ys =
2 + (1 − E)2

4(1 − E)
+

1

π

1
∫

E

atan

{

4t
√

1 − t
√

t − E

(2t − 1)2

}

dt.

Proof. (ii) From (3.7) and B = 1, E = F we have:

(4.2) A1 =
(5 − 2E − E2)(D + 1)

2D
, A2 =

2(E − 1)(D + 1)

D
.

With B = 1 and E = F , it follows from (3.8), (3.9) and (3.11):

(4.3) Î0 =
1

π

1
∫

E

atan
{

ϕ2(t)
}

dt
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where:

(4.4) ϕ2(t) =
(2t − 1)2

4t
√

1 − t
√

t − E
.

Because atan {ϕ2(t)} =
π

2
− atan {1/ϕ2(t)}, it follows from (4.3) and (4.4):

(4.5) Î0 =
1

2
(1 − E) − 1

π

1
∫

E

atan

{

4t
√

1 − t
√

t − E

(2t − 1)2

}

dt.

Substitution of (4.2) and (4.5) into (3.6) (with E = F ) yields (4.1).
(i) In order to prove the existence of Stoneley waves, according to Propo-

sition 2 we have to show: ys > 1 ∀E ∈ (0, 1), where ys is given by (4.1). We
recall that ys is a root of the equation P (z) = 0, i. e. P (ys) = 0, where P (z) is
defined by (3.38) (in which E = F and B = 1). If ys > 1, from (3.27) it follows:
f(ys) = 0. Therefore, a Stoneley wave is possible, according to Proposition 2.

First, we show that ys /∈ (E, 1). Indeed, from (3.16), E = F and B = 1, it is
easy to verify that f±

2 (t) 6= 0 ∀t ∈ (E, 1). Suppose ys ∈ (E, 1). As P (ys) = 0 ⇒
P±(ys) = 0. From (3.28) and the fact 1/Φ±(ys) 6= 0 it follows f±

2 (ys) = 0. But
this contradicts f±

2 (t) 6= 0 ∀t ∈ (E, 1). Therefore, we conclude: ys /∈ (E, 1) (∗).
It is not difficult to verify that:

(4.6)
2 + (1 − E)2

4(1 − E)
> E ∀E ∈ (0, 1).

Therefore, from (4.1): ys > E ∀E ∈ (0, 1) (∗∗).
Suppose ys = 1 ⇒ P (z) = z0(z − 1)2, z0 6= 0, because z = 1 is double root of

P (z) = 0 (noting (3.39)) and P (z) is a second-order polynomial. From this fact,
(3.26) and (φ4) it follows that:

(4.7) lim
z→1

f(z)√
z − 1

= 0.

However, one can see from Eq. (3.5) with E = F, B = 1 that:

(4.8) lim
z→1

f(z)√
z − 1

=
√

1 − E

(

1 +
1

D

)

> 0 ∀E ∈ (0, 1), D > 0.

Therefore, we have: ys 6= 1 (∗∗∗). From (∗), (∗∗) and (∗∗∗) it follows: ys > 1. The
proof of Theorem 4 is completed.

Remark 1. (i) Since ys given by (4.1) is the slowness of a Rayleigh wave
propagating in a traction-free isotropic elastic half-space [24, 25], it is interest-

ing that in this case, the Stoneley travels as a Rayleighh wave in each half-space
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subject to traction-free condition. Because two isotropic elastic half-spaces have
the same Rayleigh wave velocities if they have the same bulk wave velocities,
this conclusion agrees with Barnett’s statement [18] saying that the sliding inter-
face of two isotropic half-spaces with the same Rayleigh wave velocities always
supports a Stoneley wave.

(ii) Since two isotropic elastic half-spaces have the same Rayleigh wave ve-
locities if they satisfy the Wiechert condition [6]:

(4.9)
λ

λ∗ =
µ

µ∗ =
ρ

ρ∗

it follows that Theorem 5 holds for two elastic-half-spaces subject the Wiechert
condition.

5. Conclusions

In this paper, by using the complex function method we have derived formulas
for the slowness of Stoneley waves propagating along the sliding interface of
two isotropic elastic half-spaces. The derivation of these formulas shows that
if a Stoneley wave exists, then it is unique. The obtained formulas help us to
show that a Stoneley wave is always possible for two elastic half-spaces with
the same bulk wave velocities that includes the Wiechert condition, a condition
that plays an important role in acoustic analyses. This existence result cannot
be established if using the formulas for the wave velocity derived in [17]. The
obtained formulas are of theoretical as well as practical interest.
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