PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and evaluation of risks in underground mining using the decision matrix risk-assessment (DMRA) technique, in Guanajuato, Mexico

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article special emphasis is placed on the importance of underground mining worldwide, in the Country of Mexico and in the State of Guanajuato, thereby generating the hiring of operational personnel to perform the main activities of this sector such as blasting, use of machinery and equipment, exploitation, fortification and amacize. Occupational accidents and diseases occur as a result of the aforementioned activities since the conditions in which workers work are not the most appropriate. To help improve working conditions, the decision matrix risk-assessment (DMRA) technique was applied, in which accidents are classified according to their severity and probability, in order to perform an assessment of the risks and identify the activities that should continue in the same manner, those that require control measures and, as a last resort, those activities that must stop. At the end of the study, corrective actions are proposed that can help to avoid the occurrence of the accidents presented, through the application of occupational safety and health regulations issued by the Secretaría del Trabajo y Previsión Social, which is a government entity that is responsible for both the issuing of and compliance with those regulations. Also establishes the obligations that must be documented according to rules that are applicable to mining activities.
Rocznik
Strony
52--59
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • Instituto Tecnológico Superior de Guanajuato, Subdirección Académica, Mexico
  • Instituto Tecnológico Superior de Guanajuato, Subdirección Académica, Mexico
  • Instituto Tecnológico Superior de Guanajuato, Subdirección Académica, Mexico
  • Volkswagen de México S.A de C.V, Mexico
Bibliografia
  • 1. Alcantara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2-4), 107124. https://doi.org/10.1016/S0169-555X(02)00083-1.
  • 2. Amirshenava, S., & Osanloo, M. (2018). Mine closure risk management: An integration of 3D risk model and MCDM techniques. Journal of Cleaner Production, 184, 389-401. https://doi.org/10.1016/j.jclepro.2018.01.186.
  • 3. Amponsah-Tawiah, K., Jain, A., Leka, S., Hollis, D., & Cox, T. (2013). Examining psychosocial and physical hazards in the Ghanaian mining industry and their implications for employees' safety experience. Journal of Safety Research, 45, 75-84. https://doi.org/10.1016/j.jsr.2013.01.003.
  • 4. Amponsah-Tawiah, K., Leka, S., Jain, A., Hollis, D., & Cox, T. (2014). The impact of physical and psychosocial risks on employee well-being and quality of life: The case of the mining industry in Ghana. Safety Science, 65, 28-35. https://doi.org/10.1016/ j.ssci.2013.12.002.
  • 5. Azadeh-Fard, N., Schuh, A., Rashedi, E., & Camelio, J. A. (2015). Risk assessment of occupational injuries using Accident Severity Grade. Safety Science, 76, 160-167. https://doi.org/10.1016/j.ssci.2015.03.002.
  • 6. Ben-Awuah, E., Richter, O., Elkington, T., & Pourrahimian, Y. (2016). Strategic mining options optimization: Open pit mining, underground mining or both. International Journal of Mining Science and Technology, 26(6), 1065-1071. https://doi.org/10. 1016/j.ijmst.2016.09.015.
  • 7. Brown, D. P. (2017). New characterizations of increasing risk. Journal of Mathematical Economics, 69, 7-11. https://doi.org/10.1016/j.jmateco.2016.12.001.
  • 8. Camacho, A., Van Brussel, E., Carrizales, L., Flores-Ramírez, R., Verduzco, B., Huerta, S. R. A., ... Díaz-Barriga, F. (2016). Mercury mining in Mexico: I. Community engagement to improve health outcomes from artisanal mining. Annals of Global Health, 82(1), 149-155. https://doi.org/10.1016/j.aogh.2016.01.014.
  • 9. CAMIMEX (2015). Seguridad y salud en la minería: Industria minero metalúrgica. México. Retrieved April 18 2018 from https://camimex.org.mx/files/8914/8002/7902/Bienal_17_1.pdf.
  • 10. Chaulya, S. K., & Prasad, G. M. (2016). Gas Sensors for Underground Mines and Hazardous Areas. Sensing and Monitoring Technologies for Mines and Hazardous Areas (pp. 161-212). Elsevier.
  • 11. Chu, C., & Muradian, N. (2016). Safety and environmental implications of coal mining. International Journal of Environment and Pollution, 59(2-4), 250-268. https://doi.org/10.1504/IJEP.2016.079899.
  • 12. Comberti, L., Demichela, M., & Baldissone, G. (2018). A combined approach for the analysis of large occupational accident databases to support accident-prevention decision making. Safety Science, 106, 191-202. https://doi.org/10.1016/j.ssci.2018.03.014.
  • 13. Dong, D. (2012). Mine gas emission prediction based on Gaussian process model. Procedia Engineering, 45, 334-338. https://doi.org/10.1016/j.proeng.2012.08.167.
  • 14. Dudek, D., Dudek, K., & Przystupa, F. W. (1998). Reduction of noise in neighborhood of lignite strip mine. Automation in Construction, 7(5), 413-426. https://doi.org/10.1016/S0926-5805(98)00044-2.
  • 15. Duijm, N. J. (2015). Recommendations on the use and design of risk matrices. Safety Science, 76, 21-31. https://doi.org/10.1016/j.ssci.2015.02.014.
  • 16. Duzgun, H. S. B., & Einstein, H. H. (2004). Assessment and management of roof fall risks in underground coal mines. Safety Science, 42(1), 23-41. https://doi.org/10.1016/S0925-7535(02)00067-X.
  • 17. Feng, H., & Wang, K. (2011). Study on Environmental Noise of the Mine TEM Detection System and Development of the Induction Probe. Procedia Earth and Planetary Science, 3, 477-484. https://doi.org/10.1016/j.proeps.2011.09.123.
  • 18. Foo, N., Bloch, H., & Salim, R. (2018). The optimisation rule for investment in mining projects. Resources Policy, 55, 123-132. https://doi.org/10.1016/j.resourpol.2017. 11.005.
  • 19. Gonzalez-Delgado, M., Gómez-Dantés, H., Fernández-Niño, J. A., Robles, E., Borja, V. H., & Aguilar, M. (2015). Factors associated with fatal occupational accidents among Mexican workers: a national analysis. PLoS One, 10(3), e0121490. https://doi.org/10.1371/journal.pone.0121490.
  • 20. Huerta-Diaz, M. A., Muñoz-Barbosa, A., Otero, X. L., Valdivieso-Ojeda, J., & Amaro- Franco, E. C. (2014). High variability in geochemical partitioning of iron, manganese and harmful trace metals in sediments of the mining port of Santa Rosalia, Baja California Sur, Mexico. Journal of Geochemical Exploration, 145, 51-63. https://doi.org/10.1016/j.gexplo.2014.05.014.
  • 21. ILO (2018). International Labour Organization. (1996-2018). Hazardous Work. Switzerland. Retrieved “Feb 19” 2018 from https://www.ilo.org/safework/areasofwork/ hazardous-work/lang-en/index.htm.
  • 22. KarimiAzari, A., Mousavi, N., Mousavi, S. F., & Hosseini, S. (2011). Risk assessment model selection in construction industry. Expert Systems with Applications, 38(8), 9105-9111. https://doi.org/10.1016/j.eswa.2010.12.110.
  • 23. Khan, F. I., & Abbasi, S. A. (1998). Techniques and methodologies for risk analysis in chemical process industries. Journal of Loss Prevention in the Process Industries, 11(4), 261-277. https://doi.org/10.1016/S0950-4230(97)00051-X.
  • 24. Krzemień, A., Sánchez, A. S., Fernández, P. R., Zimmermann, K., & Coto, F. G. (2016). Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. Journal of Cleaner Production, 139, 1044-1056. https://doi.org/10.1016/j.jclepro.2016.08.149.
  • 25. Li, J., & Zhan, K. (2018). Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment. Engineering, 4(3) https://doi.org/10.1016/j.eng.2018.05.013.
  • 26. Mahdevari, S., Shahriar, K., & Esfahanipour, A. (2014). Human health and safety risks management in underground coal mines using fuzzy TOPSIS. The Science of the Total Environment, 488-489, 85-99. https://doi.org/10.1016/j.scitotenv.2014.04.076.
  • 27. Mancini, L., & Sala, S. (2018). Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resources Policy, 57, 98-111. https://doi.org/10.1016/j.resourpol.2018.02.002.
  • 28. Marhavilas, P. K., Koulouriotis, D., & Gemeni, V. (2011). Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000-2009. Journal of Loss Prevention in the Process Industries, 24(5), 477-523. https://doi.org/10.1016/j.jlp.2011.03.004.
  • 29. Mayton, A. G., Porter, W. L., Xu, X. S., Weston, E. B., & Rubenstein, E. N. (2018). Investigation of human body vibration exposures on haul trucks operating at US surface mines/quarries relative to haul truck activity. International Journal of Industrial Ergonomics, 64, 188-198. https://doi.org/10.1016/j.ergon.2017.05.007.
  • 30. Mishra, R. K., Janiszewski, M., Uotinen, L. K. T., Szydlowska, M., Siren, T., & Rinne, M. (2017). Geotechnical Risk Management Concept for Intelligent Deep Mines. Procedia Engineering, 191, 361-368. https://doi.org/10.1016/j.proeng.2017.05.192.
  • 31. Nguyen, N. B., Boruff, B., & Tonts, M. (2017). Mining, development and well-being in Vietnam: A comparative analysis. The Extractive Industries and Society, 4(3), 564-575. https://doi.org/10.1016/j.exis.2017.05.009.
  • 32. Pashkevich, M. A. (2017). Classification and environmental impact of mine dumps. In J. Bech, C. Bini, & M. A. Pashkevich (Eds.). Assessment, Restoration and Reclamation of Mining Influenced Soils (pp. 1-32). Elsevier : Academic Press. https://doi.org/10.1016/B978-0-12-809588-1.00001-3.
  • 33. Pietilä, J., Räsänen, T., Reiman, A., Ratilainen, H., & Helander, E. (2018). Characteristics and determinants of recurrent occupational accidents. Safety Science, 108, 269-277. https://doi.org/10.1016/j.ssci.2017.12.020.
  • 34. Roghanchi, P., & Kocsis, K. C. (2018). Challenges in selecting an appropriate heat stress index to protect workers in hot and humid underground mines. Safety and Health at Work, 9(1), 10-16. https://doi.org/10.1016/j.shaw.2017.04.002.
  • 35. Ryan, A., & De Souza, E. (2017). Heat stress management in underground mines. International Journal of Mining Science and Technology, 27(4), 651-655. https://doi.org/10.1016/j.ijmst.2017.05.020.
  • 36. Sanmiquel, L., Rossell, J. M., & Vintró, C. (2015). Study of Spanish mining accidents using data mining techniques. Safety Science, 75, 49-55. https://doi.org/10.1016/j.ssci.2015.01.016.
  • 37. Sari, M., Selcuk, A. S., Karpuz, C., & Duzgun, H. S. B. (2009). Stochastic modeling of accident risks associated with an underground coal mine in Turkey. Safety Science, 47(1), 78-87. https://doi.org/10.1016/j.ssci.2007.12.004.
  • 38. SE (2018). Secretaría de Economía Minería: El sector minero-metalúrgico en México contribuye con el 4 por ciento del Producto Interno Bruto nacional. México. Retrieved March 6 2018 from https://www.gob.mx/se/acciones-y-programas/mineria.
  • 39. STPS (2012). Secretaría del Trabajo y Previsión Social. NORMA Oficial Mexicana NOM-023- STPS-2012, Minas subterráneas y minas a cielo abierto-Condiciones de seguridad y salud en el trabajo. México. Retrieved May 10 2018 fromhttp://asinom.stps.gob.mx:8145/upload/nom/32.pdf.
  • 40. STPS (2017). Secretaría del Trabajo y Previsión Social. PROYECTO de Norma Oficial Mexicana PROY-NOM-036-1-STPS-2017, Factores de riesgo ergonómico en el trabajo- Identificación, análisis, prevención y control. Parte 1-Manejo manual de cargas. México. Retrieved April 19 2018 from http://www.dof.gob.mx/nota_detalle.php?codigo=5510064&fecha=04/01/2018.
  • 41. Widiatmojo, A., Sasaki, K., Sugai, Y., Suzuki, Y., Tanaka, H., Uchida, K., et al. (2015). Assessment of air dispersion characteristic in underground mine ventilation: Field measurement and numerical evaluation. Process Safety and Environmental Protection, 93, 173-181. https://doi.org/10.1016/j.psep.2014.04.001.
  • 42. Winn, F. J., Jr., Biersner, R. J., & Morrissey, S. (1996). Exposure probabilities to ergonomic hazards among miners. International Journal of Industrial Ergonomics, 18(5-6), 417-422. https://doi.org/10.1016/0169-8141(95)00104-2.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-001b4a52-73d2-4090-82a1-4fda091a3e3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.