PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the Durability of Composite Soft Ballistic Inserts

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Prognozowanie trwałości kompozytowych miękkich wkładów balistycznych
Języki publikacji
EN
Abstrakty
EN
The main goal of this research was to develop a method of predicting the durability of soft ballistic inserts made of a high-strength composite based on polyethylene ultra-high molecular weight (UHMWPE) fibres. The research presents a program of tests on the simulated use of composite ballistic inserts elaborated in order to predict the durability as well as changes in the ballistic, physical and mechanical properties occurring due to conditions of use. The research program took the following three procedures of the aging simulation of the ballistic inserts into account: procedure 1 – applying a mechanical load to the insert; procedure 2 – applying a mechanical load along with a temperature cycle to the insert; procedure 3 – applying a mechanical load, temperature cycle and liquid solution simulating human perspiration to the insert. The procedures were verified experimentally by examining inserts made out of soft composite polyethylene Dyneema® SB 21. Also verification by means of the Snedecor’s F-test was carried out. It was shown that the effect of mechanical loading, temperature cycling, and the solution simulating human perspiration influences the progress of degradation of the polyethylene material. The research work included testing new ballistic inserts made of a polyethylene composite, as well as ones subjected to simulation ageing. To investigate the correlation between the natural ageing process and the simulated one, ballistic inserts used under natural conditions for 5, 7, 9 and 13 years were examined. Selected samples were used for the determination of mechanical and ballistic property variation as well as changes in their chemical structure. Changes in the microstructure of the ballistic material were assessed by DSC analysis and infrared spectroscopy (FTIR-ATR).
PL
Głównym celem realizowanych prac było opracowanie metody prognozowania trwałości miękkich wkładów balistycznych wykonanych z wysokowytrzymałego kompozytu na bazie polietylenu o bardzo dużym ciężarze cząsteczkowym(UHMWPE). W artykule przedstawiono program badań symulacji użytkowania kompozytowych wkładów balistycznych, który opracowano celem prognozowania trwałości, a tym samym przewidywania zmian parametrów balistycznych, fizyko-mechanicznych wkładów ochronnych, zachodzących pod wpływem warunków eksploatacji. Wnioskowanie odnośnie zmian stanu technicznego wyrobów balistycznych pod wpływem warunków przechowywania i użytkowania wymagało zweryfikowania opracowanej metodyki badawczej i przeprowadzenia badań uwzględniających metodę przyspieszonego starzenia. W ramach pracy badaniom poddano nowe pakiety balistyczne wykonane z kompozytu polietylenowego, jak również poddane starzeniu laboratoryjnemu. Celem zbadania korelacji między procesami starzenia naturalnego i symulowanego zbadano pakiety balistyczne użytkowane w warunkach naturalnych przez 5, 7, 9 i 13 lat. Dla wytypowanych próbek zostały przeprowadzone badania właściwości mechanicznych i balistycznych oraz zmian ich struktury chemicznej. Zmiany w strukturze materiałów balistycznych oceniono za pomocą metod: analizy termicznej DSC, spektroskopii w podczerwieni (FTIR-ATR).
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Institute of Security Technology MORATEX, Łódź, Poland
autor
  • Institute of Security Technology MORATEX, Łódź, Poland
autor
  • Institute of Security Technology MORATEX, Łódź, Poland
autor
  • Institute of Security Technology MORATEX, Łódź, Poland
Bibliografia
  • 1. Jachowicz T, Sikora R. Methods of forecasting of the changes of polymeric products properties (in Polish). Polimery 2006; 51: 177-185.
  • 2. Tavares AC, Gulmine JV, Lepienski CM, et al. The effect of accelerated aging on the surface mechanical properties of polyethylene. Polym. Degrad. Stab. 2003; 81: 367-373.
  • 3. Medel J, García-Alvarez F, Gómez-Barrena E, et al. Microstructure change of extruded ultrahigh molecular weight polyethylene after gamma irradiation and shelf-aging. Polym. Degrad. Stab. 2005; 88: 435-443.
  • 4. Liu X, Yu W. Evaluation of the Tensile Properties and Thermal Stability of Ultrahigh-Molecular-Weight Polyethylene Fibers. J. Appl. Polym. Sci. 2005; 97: 310-315.
  • 5. Brown JR, Browne NM, Burchill PJ, et al. Photochemical Ageing of Kevlar® 49. Tex. Res. J. 1983; 53: 214-219.
  • 6. Jain A, Vijayan K. Thermal Aging of Twaron Fibers. High Performance Polymers 2003; 15: 105-129.
  • 7. Bourget D, Withnall C, Palmer S, et al. Aged Body Armour Testing: Further Results. In: PASS 2012 Personal Armour Systems Symposium. 17-21 September, 2012, Nuremberg, Germany, ISBN:978- 3-935938-93-8.
  • 8. Chin J, Forster A, Clerici C, et al. Temperature and humidity aging of poly(pphenylene-2,6-benzobisoxazole) fibers: Chemical and physical characterization. Polym. Degrad. Stab. 2007; 92: 1234– 1246.
  • 9. Third status report to the Attorney Generalon Body Armor Safety Initiative Testing and Activities, August 2005, National Institute of Justice, USA, November 20, 2006, http://www.ojp.usdoj.gov/bvpbasi/ docs/SupplementII_08_12_05_execsummary.pdf (accessed 26 January 2013).
  • 10. Alves DS, Leite A, Nascimento C, et al. Influence of weathering and gamma irradiation on the mechanical and ballistic behavior of UHMWPE composite armor. Polymer Testing 2005; 24: 104-113.
  • 11. Chabba S, Van Es M, Van Klinken EJ, et al. Accelerated ageing study of ultrahigh molecular weight polyethylene yarn and unidirectional composites for ballistic applications. J. Mater. Sci. 2007; 42: 2891-2893.
  • 12. Chin JW, Petit S, Lin C-C, et al. Temperature and Moisture Effects on the Accelerated Aging of UHMWPE and Aramid Ballistic Fibers. In: PASS 2012 Personal Armour Systems Symposium, Nuremberg, Germany, 17-21 September 2012, ISBN:978-3-935938-93-8.
  • 13. Buchanan FJ, White JR, Sim B, et al. The influence of gamma irradiation and aging on degradation mechanisms of ultra-high molecular weight polyethylene. J. Mater. Sci.: Materials in Medicine 2001; 12: 29-3.
  • 14. Rabello MS, White JR. Crystallization and melting behaviour of photodegraded polypropylene — I. Chemi-crystallization. Polymer 1997; 38: 6379-6387.
  • 15. Rabello MS, White JR. Crystallization and melting behaviour of photodegraded polypropylene — II. Re-crystallization of degraded molecules. Polymer 1997; 38: 6389-6399.
  • 16. Rabello MS, White JR. The role of physical structure and morphology in the photodegradation behaviour of polypropylene. Polym. Deg. Stab. 1997; 56: 55-73.
  • 17. Fejdyś M, Łandwijt M, Struszczyk MH. Effect of Accelerated Ageing Conditions on the Degradation Process of Dyneema® Polyethylene Composites. Fibres & Textiles in Eastern Europe 2011; 19: 60-65.
  • 18. PN-EN ISO 2286-1:2000. Rubber – or plastics – coated fabrics – Determination of roll characteristics – Part 1: Methods for determination of length, width and net mass (ISO 2286-1:1998).
  • 19. PN-EN ISO 2286-2:1999. Rubber – or plastics – coated fabrics – Determination of roll characteristics – Part 2: Methods for determination of total mass per unit area, mass per unit area of coating and mass per unit area of substrate (ISO 2286-2:1998).
  • 20. PN-EN ISO 2286-3:2000. Rubber - or plastics-coated fabrics – Determination of roll characteristics – Part 3: Method for determination of thickness.
  • 21. PN-EN ISO 1421:2001. Rubber- or plastics-coated fabrics – Determination of tensile strength and elongation at break (ISO 1421:1998).
  • 22. Wieczorkowska G, Kochański P, Eljaszuk M. Statistics: Introduction to poll and experimental data analysis. Ed. Wydawnictwo Naukowe Scholar, Warsaw, 2003, pp. 190-193, 496-497.
  • 23. PN-EN ISO 105-E04:2011. Fabrics - Tests for color fastness -Part E04: Textiles – a study of dyeing resilence to perspiration.
  • 24. NO-06-A107:2005. Armament and military equipment. General technical requirements, methods of research and control. Methods of examining the complete immunity to the environmental factors.
  • 25. NATO STANAG 2920:1996. The adoption of standards for ballistic protection levels and testing.
  • 26. PN-V-87000:1999. Light ballistic armours – Ballistics protection vests - General requirements and tests.
  • 27. Karacan I. Structure-property Relationships in High-strength High-modulus Polyethyelene Fibres. Fibers & Textiles in Eastern Europe 2005; 52: 15-21.
  • 28. Zieliński W. Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. Ed. WNT, Warsaw, 2000.
  • 29. Rocha M, Mansur A, Mansur H. FTIR Investigation of UHMWPE Oxidation Submitted to Accelerated Aging Procedure. Macromolecular Symposia 2010; 296: 487-492.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0012e432-232a-4aea-bb06-0bde29dcc213
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.