Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ceramic membranes are among one of the most promising candidates for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. These advantages make them an attractive filter material. An additional benefit which is extremely important for the industry, is their possibility of continuous operation at high efficiency while maintaining constant transmembrane pressure. Due to the inorganic material from which they are made, ceramic membranes have the possibility of being cleaned by steam sterilization and are resistant to micro-organisms. Although, due to low production costs, ceramic membranes are one of the most cost-effective membrane filtration technologies they are prone to substantial fouling. When used, a layer of contaminants is formed on the active surface, often reducing or completely filling the membrane pores resulting in fouling and concentration polarization. These phenomena cause a decreased efficiency of the process, which leads to the need for the membrane to be replaced with a new one. However, ceramic membranes have the possibility of being regenerated through a series of activities and the use of various chemical agents. The use of regenerated membranes would provide the opportunity to reduce exploitation costs. Although membrane regeneration does not guarantee a return to the initial parameters, it does allow for the recovery of high permeation flow. The aim of the research was to compare operating parameters of the ceramic membranes after multiple use and longtime storage with different condition of storage.
Wydawca
Czasopismo
Rocznik
Tom
Strony
72--81
Opis fizyczny
Bibliogr. 27 poz., il.
Twórcy
autor
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 90-924 Łódź, Poland
Bibliografia
- [1] J. Finley, Ceramic membranes: a robust filtration alternative, Filtr. Separat.42 (2005) 34-37
- [2] https://www.lenntech.com/ceramic-membranes.htm
- [3] R. Weber, H. Chmiel, V. Mavrov, Characteristics and application of new ceramic nanofiltration membrane, Desalination 157 (2003) 113-125
- [4] http://deltapore.com/en/ceram/?gclid=Cj0KCQjw5s3cBRCAARIsAB8ZjU0CD8ibASmLysLzi7WbFC7Vux6NFv5iz0umgWSW_ruL-ZK-ZY-bok8aAouKEALw_wcB
- [5] https://www.lenntech.com/ceramic-membranes-features.htm
- [6] http://intermasz.com/cms/js/xinha/plugins/ExtendedFileManager/upload/InsideCeRAM_membranes.pdf
- [7] R. Sondhi, R. Bhave, G. Jung, Applications and benefits of ceramic membranes, Membrane Technology 11 (2003) 5-8
- [8] A. Ghadimkhani, W. Zhang, T. Marhaba, Ceramic membrane defouling (cleaning) by air Nano Bubbles, Chemosphere 146 (2016) 379-384
- [9] L.V. Saboya, J.L. Maubois, Current developments of microfiltration technology in the dairy industry, Le Lait 80 (2000) 541-553
- [10] E. Iritani, N. Katagiri, Developments of Blocking Filtration Model in Membrane Filtration, KONA Powder Part. J. 33 (2016) 179-202
- [11] J. Żulewska, M. Newbold, D.M. Barbano, Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50°C, J. Dairy Sci. 92 (2009) 1361-1377
- [12] K. Kyung-Jo, A. Jang, Fouling characteristic of NOM during the ceramic membrane microfiltration process for water treatment, Desalin. Water Traeat. 57 (2016) 9034-9042
- [13] A.L. Lim, R. Bai, Membrane fouling and cleaning in microfiltration of activated sludge wastewater, J. Membr. Sci. 216 (2003) 279-290
- [14] V.B. Brião, C. R. G. Tavares, Pore blocking mechanism for the recovery of milk solids from dairy wastewater by ultrafiltration, Braz. J. Chem. Eng. 29 (2012) 393-407
- [15] P.H. Hermans, H.L. Bredée, Principles of the mathematic treatment of constant-pressure filtration, J. Soc. Chem. Ind. 55T (1936) 1-4
- [16] H.P. Grace, Structure and performance of filter media. II. Performance of filter media in liquid service, AIChE J. 2 (1956) 316-336
- [17] M. Shirato, T. Aragaki, E. Iritani, Blocking filtration laws for filtration of power-law non-Newtonian fluids, J. Chem. Eng. Jpn. 12 (1979) 162-164
- [18] J. Hermia, Constant pressure blocking filtration laws-Application to power-law non-Newtonian fluids, Transaction of The Institution of Chemical Engineers 60 (1982) 183-187
- [19] E. Guillen-Burrieza, A. Ruiz-Aguirre , Z. Guillermo, H. Arafat, Membrane fouling and cleaning in long term plant-scale membrane distillation operations, J. Membr. Sci. 468 (2014) 360-372
- [20] N.Z.Z. Yin, W. Xing, Ceramic membrane fouling and cleaning in ultrafiltration of desulfurization wastewater, Desalination 319 (2013) 92-98
- [21] W. Li, G. Ling, F. Lei, N. Li, W. Peng, K. Li, H. Lu, F. Hang, Y. Zhan, Ceramic membrane fouling and cleaning during ultrafiltration of limed sugarcane juice, Sep. Purif. Technol. 190 (2018) 9-24
- [22] G. Liu, Z. Wu, V.S.J. Craig, Cleaning of protein-coated surfaces using nanobubbles: an Investigation using a quartz crystal microbalance, J. Phys. Chem. C 112 (2008) 16748-16753
- [23] X. Shi, G. Tal, N.P. Hankins, V. Gitis, Fouling and cleaning of ultrafiltration membranes: a review, J. Water Process Eng. 1 (2014) 121-138
- [24] M. Takahashi, P. Li, Base and technological application of micro-bubble and nanobubble, Mater. Integration 22 (2009) 2-19
- [25] B. Blasi, L. Grospelly, Technical directions for 20-60-120 housings, TAMI INDUSTRIES (2010)
- [26] A. Doniec, Zbiór danych do obliczeń z inżynierii chemicznej. Wydawnictwo Politechniki Łódzkiej (1981)
- [27] http://intermasz.com/cms/js/xinha/plugins/ExtendedFileManager/upload/Spirlab.pdf
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0012dc3c-710f-4bae-a5b4-f0ff3e1e0a09