PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of the energy distribution of SABC circuits

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improving the energy efficiency of large grinding mills is of great importance to reduce the energy cost of mineral processing. The ratio of SAG mill to ball mill’s energy consumption varies greatly among SABC operations. Thus far, very few research studies have been conducted to demonstrate how the SAG mill or ball mill responses to the change of circuit energy distribution in terms of comminution efficiency. The present study investigated the energy performance of an operating SABC circuit at variable circuit energy distributions. An energy benchmarking model was used to assess the comminution energy efficiency of SAG mill, ball mill, and overall circuit. It is found that the target SABC circuit achieves the highest overall energy efficiency when 37.6% of the total circuit energy is distributed to the SAG mill and 62.4% to the ball mill. The maximum energy efficiency of this SABC circuit is approximately 25% when compared to the minimum practical energy required to carry out an equivalent comminution duty. The study also showed that the ball mill is more sensitive to the variation in circuit energy distribution than the SAG mill.
Rocznik
Strony
1245--1252
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • University of Science and Technology Beijing
autor
  • University of British Columbia
autor
  • University of Science and Technology Beijing
autor
  • University of British Columbia
autor
  • University of Science and Technology Beijing
Bibliografia
  • BALLANTYNE G., POWELL M., M. TIANG, 2012. Proportion of energy attributable to comminution. 11th AusIMM Mill Operators’ Conference, Hobart, Tasmania.
  • BUENO, M., FOGGIATTO, B., LANE, G., 2015. Geo-metallurgy applied in comminution to minimize design risks. Proceedings International Conference on Autogenous and Semiautogenous Grinding Technology, Vancouver, Canada.
  • CASTILLO G.M., BISSUE C., 2011. Evaluation of secondary crushing prior to SAG milling at Newmont’s Phoenix operation. Proceedings International Conference on Autogenous and Semiautogenous Grinding Technology. Vancouver, Canada.
  • FESTA A., PUTLAND B., SCINTO P.,2014. Shedding light on secondary crushing. SME Annual Meeting, , Salt Lake City, UT.
  • HADAWAY J.B., BENNETT D.W., 2011. An overview of the design, construction, commissioning and early years of operation of the sag/ball mill grinding circuit at Phu Kham copper gold operation in Laos. Proceedings International Conference on Autogenous and Semiautogenous Grinding Technology, Vancouver, Canada.
  • HART S., VALERY W., CLEMENTS B., REED M., SONG M., DUNNE R., 2001. Optimization of the Cadia Hill SAG Mill Circuit. Proceedings International Conference on Autogenous and Semiautogenous Grinding Technology. Vancouver, Canada.
  • HOGG R., FUERSTENAU D.W., 1972. Power Relations for Tumbling Mills. Trans. SME-AIME, 252, 418–432.
  • LIU H., 2014. The laws of the energy distribution in Wushan SABC comminution circuit and the practical approach. PhD Thesis. Beijing: University of Science and Technology Beijing.
  • MORRELL S., VALERY W., 2001. Influence of feed size on AG/SAG mill performance. Proceedings International Conference on Autogenous and Semiautogenous Grinding Technology. Vancouver, Canada.
  • HUKKI R.T., 1962. Proposal for a solomonic settlement between the theories of von Rittinger, Kick, and Bond. Trans. AIME 223, 403–408.
  • JANKOVIC A., VALERY W., 2002. Mine to mill optimisation for conventional grinding circuits – a scoping study. J. Min. Metall. 38 (1–4) A, 49–66.
  • MUSA F., MORRISON R., 2009. A more sustainable approach to assessing comminution efficiency. MINER ENG. 22, 593– 601.
  • MORRELL S., 2011. The appropriateness of the transfer size in AG and SAG mill circuit design. Proceedings International Conference on Autogenous and Semiautogenous Grinding Technology, Vancouver, Canada.
  • NADOLSKI, S., KLEIN, B., KUMAR, A., DAVAANYAM, Z., 2014. An energy benchmarking model for mineral comminution. MINER ENG, 65, 178–186.
  • NADOLSKI, S., KLEIN, B., GONG, D., DAVAANYAM, Z., COOPER, A., 2015. Development and application of an energy benchmarking model for mineral comminution. Proceedings International Conference on Autogenous and Semiautogenous Grinding Technology, Vancouver, Canada.
  • SHI F., KOJOVIC T., 2007. Validation of a model for impact breakage incorporating particle size effect. Int. J. Miner. Process. 82, 156–163.
  • SHI F., KOJOVIC T., BRENNAN M., 2015. Modelling of vertical spindle mills. Part 1: Sub-models for comminution and classification. Fuel. 143, 595–601.
  • SHI F., 2016. A review of the applications of the JK size-dependent breakage model Part 1: Ore and coal breakage characterization. Int. J. Miner. Process. 155, 118–129.
  • VOGEL L., PEUKERT W., 2003. Breakage behaviour of different materials—construction of a mastercurve for the breakage probability. Powder Technol. 129, 101–110.
  • WANG, C., NADOLSKI, S., MEJIA, O., DROZDIAK, J., KLEIN, B., 2013. Energy and cost comparisons of HPGR based circuits with the SABC circuit installed at the Huckleberry mine. 45th Annual Canadian Mineral Processors Operators Conference, Ottawa, Canada.
  • WANG P., KOU J., SUN C., WANG C., ZHANG M., KYONGHUN R., 2015. Operational evaluation of AG/SAG mills in China. Proceedings International Conference on Autogenous and Semiautogenous Grinding Technology, Vancouver, Canada.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0010f230-fae1-4290-853d-56321adc5aea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.