PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Water Supply Networks - performance modelling and assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
17th Summer Safety & Reliability Seminars - SSARS 2023, 9-14 July 2023, Kraków, Poland
Języki publikacji
EN
Abstrakty
EN
Performance modelling and assessment of Water Supply System (WSS) is a critical activity in system management process. It contributes into producing indicators necessary for the optimisation of the system operation, maintenance, safety, and resources use. The Water Supply Network (WSN) is a major component of any WSS. Assessing the performance of the WSN requires the development of dynamic-probabilistic models and the use of performance notions that are beyond the local availability and reliability of a cluster of pipes (mains, connections, and distributions) or nodes. The proposed performance notions are fully described in terms of performance-levels. The proposed modelling scheme is applied on a real WSN that has slightly been modified to preserve the didactic quality of the chapter and render the modelling scheme accessible at its first uses. Once the use of the scheme is mastered, its exploitation for real and complex WSN is straight forward.
Słowa kluczowe
Twórcy
Bibliografia
  • Alegre, H., Baptista, J.M., Cabrera, E., Cubillo, F., Duarte, P., Hirner, W., Merkel, W., & Parena, R. 2016. Performance Indicators for Water Supply Services: third edition. Manual of Best Practice. IWA Publishing, London, UK.
  • AL-Washali, T., Sharma, S. & Kennedy, M. 2016. Methods of assessment of water losses in water supply systems: a review. Water Resources Management 30, 4985-5001.
  • Ashton, C.H. & Hope, V.S. 2001. Environmental valuation and the economic level of leakage. Urban Water 3(4), 261-270.
  • Ciraane, U., Mutua, B., Abdelbaki, C. & Boumazzza, T. 2022. Performance indicators of water supply network of Goma Township in the Democratic Republic of Congo: a tripartite assessment. Applied Water Science 12, 158.
  • Di Nardo, A., Giudicianni, C., Greco, R., Herrera, M. & Santonastaso, G.F. 2018. Applications of graph spectral techniques to water distribution network management. Water 10, 45.
  • Diao, K., Sweetapple, C., Farmani, R., Fu, G., Ward, S. & Butler, D. 2016. Global resilience analysis of water distribution systems. Water Research 106, 383-393.
  • Directive EU 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption, OJ L 435, 23 December 2020.
  • Dong, L., Xue, H. & Zhang, W. 2018. Optimal layout method of water pressure monitoring points for water supply network based on fault diagnosis. Journal of Civil Architectural & Environmental Engineering 40, 53-61.
  • Dziedzic, R. & Karney, B. 2014. Water distribution system performance metric. Procedia Engineering 89, 363-369.
  • Eid, M., Dominique, S., Barbarin, Y., Estel, L., Souza de Cursi, E. & El-Hami, A. 2014. Critical Infrastructures Protection (CIP) - contribution to EU research on resilience & preparedness. Journal of Polish Safety and Reliability Association. Summer Safety and Reliability Seminars 5(1), 47-56.
  • Eid, M., El-Hami, A., Souza de Cursi, E., Kołowrocki, K., Kuligowska, E. & Soszyńska-Budny, J. 2015. Critical Infrastructures Protection (CIP) - coupled modelling for threats and resilience. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 1, 85-94.
  • Eid. M. 2010. Modelling sequential events for risk, safety and maintenance assessments. Journal of Polish Safety and Reliability Association. Summer Safety and Reliability Seminars 1, 83-87.
  • EN 15975-1:2011. Security of Drinking Water Supply. Guidelines for Risk and Crisis Management. Part 1. Crisis Management. British Standards Institution: London, UK.
  • EN 15975-2:2013. Security of Drinking Water Supply. Guidelines for Risk and Crisis Management. Part 2. Risk Management. British Standards Institution: London, UK.
  • Eugine, M. 2017. Predictive leakage estimation using the cumulative minimum night flow approach. American Journal of Water Resources 5(1), 1-4.
  • Farah, E. & Shahrour, I. 2017. Leakage detection using smart water system: combination of water balance and automated minimum night flow. Water Resources Management 31, 4821-4833.
  • Farley, M. & Trow, S. 2007. Losses in Water Distribution Networks. A Practitioner’s Guide to Assessment, Monitoring, and Control. IWA Publishing, London, UK.
  • Ganjidoost, A., Knight, M., Unger, A. & Haas, C. 2021. Performance modelling and simulation for water distribution networks. Frontiers in Water 3, 718215.
  • Giudicianni, C., Di Nardo, A., Di Natale, M., Greco, R., Santonastaso, G.F. & Scala, A. 2018. Topological taxonomy of water distribution networks. Water 10, 444.
  • Gutiérrez-Pérez, J.A., Herrera, M., Pérez-García, R. & Ramos-Martínez, E. 2013. Application of graph-spectral methods in the vulnerability assessment of water supply networks. Mathematical and Computer Modelling 57, 1853-1859.
  • Hamilton, L.W. 2020. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. 1st Edition, Springer.
  • Hayelom, A. & Ostfeld, A. 2022. Network subsystems for robust design optimization of water distribution systems. Water 14, 2443.
  • Herrera, M., Abraham, E. & Stoianov, I. 2016. A graph-theoretic framework for assessing the resilience of sectorised water distribution networks. Water Resources Management 30, 1685-1699.
  • Kang, D., Pasha, M. & Lansey, K. 2009. Approximate methods for uncertainty analysis of water distribution systems. Urban Water Journal 6, 233-249.
  • Kwietniewski, M., Roman, M. & Kłos-Trębaczkiewicz, H. 1993. Reliability of Water Supply and Sewage Systems. Arkady, Warsaw, Poland.
  • Lambert, A. & Hirner, W. 2000. Losses from Water Supply Systems: Standard Terminology and Recommended Performance Measures. IWA Publishing, London, UK.
  • Lambert, A.O., Brown, T.G., Takizawa, M. & Weimer, D. 1999. A review of performance indicators for real losses from water supply systems. Journal of Water Supply: Research and Technology-Aqua 48, 227-237.
  • Li, C., Liu, C., Xu, W., Shan, M. & Wu, H. 2022. Formation mechanisms and supervisory prediction of scaling in water supply pipelines: a review. Water Research 222, 118922.
  • Liu, G., Zhang, Y., Knibbe, W.-J., Feng, C., Liu, W., Medema, G. & van der Meer, W. 2017. Potential impacts of changing supply-water quality on drinking water distribution: a review. Water Research 116, 135-148.
  • Meier, R.W. & Barkdoll, B.D. 2000. Sampling design for network model calibration using genetic algorithms. Journal of Water Resources Planning and Management 126, 245-250.
  • Mian, H.R., Hu, G., Hewage, K., Rodriguez, M.J. & Sadiq, R. 2023. Drinking water management strategies for distribution networks: an integrated performance assessment framework. Journal of Environmental Management 325, 116537.
  • Papciak, D., Tchórzewska-Cieslak, B., Pietrucha-Urbanik, K. & Pietrzyk, A. 2018. Analysis of the biological stability of tap water based on risk analysis and parameters limiting the secondary growth of microorganisms in water distribution systems. Desalination Water Treatment 117, 1-8.
  • Peng, S., Cheng, J., Wu, X., Fang, X. & Wu, Q. 2022. Pressure sensor placement in water supply network based on graph neural network clustering method. Water 14, 150.
  • Pietrucha-Urbanik, K. & Rak, J.R. 2020 Consumers’ perceptions of the supply of tap water in crisis situations. Energies 2020, 13, 3617.
  • Pietrucha-Urbanik, K., Tchórzewska-Cieślak, B. & Eid, M. 2018. Cascading failure analysis in order to assess the resilience of a water supply system, Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 9(3), 55-64.
  • Pietrucha-Urbanik, K., Tchórzewska-Cieślak, B. & Eid, M. 2020. Water network-failure data assessment. Energies 13, 2990.
  • Pietrucha-Urbanik, K., Tchórzewska-Cieślak, B. & Eid, M. 2021. A case study in view of developing predictive models for water supply system management. Energies 14, 3305.
  • Ponti, A., Candelieri, A., Giordani, I. & Archetti, F. 2021. A novel graph-based vulnerability metric in urban network infrastructures: the case of water distribution networks. Water 13, 1502.
  • Puust, R., Kapelan, Z., Savic, D.A. & Koppel, T. 2010. A review of methods for leakage management in pipe networks. Urban Water Journal 7(1), 25-45.
  • Rak, J.R. & Pietrucha-Urbanik, K. 2019. An approach to determine risk indices for drinking water – study investigation. Sustainability 11, 3189.
  • Shuang, Q., Zhang, M. & Yuan, Y. 2014. Performance and reliability analysis of water distribution systems under cascading failures and the identification of crucial pipes. PLoS ONE 9, e88445.
  • Tchórzewska-Cieślak, B., Pietrucha-Urbanik, K. & Eid, M. 2021. Functional safety concept to support hazard assessment and risk management in water-supply systems. Energies 14(4), 947.
  • Tchórzewska-Cieślak, B., Pietrucha-Urbanik, K. & Kuliczkowska, E. 2020. An approach to analysing water consumers’ acceptance of risk-reduction costs. Resources 9, 132.
  • Tchórzewska-Cieślak, B., Pietrucha-Urbanik, K. & Papciak, D. 2019. An approach to estimating water quality changes in water distribution systems using fault tree analysis. Resources 8, 162.
  • Torres, J.M., Duenas-Osorio, L., Li, Q. & Yazdani, A. 2017. Exploring topological effects on water distribution system performance using graph theory and statistical models. Journal of Water Resources Planning and Management 143(1), 04016068.
  • Tzatchkov, V.G., Alcocer-Yamanaka, V.H. & Bourguett Ortíz, V. 2006. Graph theory based algorithms for water distribution network sectorization projects. Proceedings of Eighth Annual Water Distribution Systems Analysis Symposium (WDSA), American Society of Civil Engineers, Cincinnati, Ohio, USA.
  • Van Der Kooij, D. 2000. Biological stability: a multidimensional quality aspect of treated water. S. Belkin & S. Gabbay (Eds.) Environmental Challenges. Springer-Science+Businnes Media, B.V., Dordrecht, Netherlands, 25-34.
  • Voogd, R., Rudberg, P.M., de Vries, J.R., Beunen, R., Espiritu, A.A., Methner, N., Larsen, R.K., Fedreheim, G.E., Goes, S. & Kruger, E. 2022. A systematic review on the role of trust in the water governance literature. Water Research 16, 100147.
  • Wagner, J.M., Shamir, U. & Marks, D.H. 1988. Water distribution reliability: simulation methods. Journal of Water Resources Planning and Management 114, 276-294.
  • WHO 2011. Guidelines for Drinking - Water Quality. 4th ed., World Health Organization: Geneva, Switzerland.
  • Yazdani, A. & Jeffrey, P. 2010. Robustness and vulnerability analysis of water distribution networks using graph theoretic and complex network principles. Proceedings of 12th Annual Conference on Water Distribution Systems Analysis (WDSA), American Society of Civil Engineers, Tucson, Arizona, 933-945.
  • Zaman, D., Tiwari, M.K., Gupta, A.K. & Sen, D. 2021. Performance indicators-based energy sustainability in urban water distribution networks: a state-of-art review and conceptual framework. Sustainable Cities and Society 72, 103036.
  • Zhou, X., Tang, Z., Xu, W., Meng, F., Chu, X., Xin, K. & Fu, G. 2019. Deep learning identifies accurate burst locations in water distribution networks. Water Research 166, 115058.
  • Żywiec, J., Szpak, D., Piegdoń, I., Boryczko, K., Pietrucha-Urbanik, K., Tchórzewska-Cieślak, B. & Rak, J. 2023. An approach to assess the water resources reliability and its management. Resources 12(1), 4.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0004af9f-ebc8-4aed-84b7-549423529b66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.