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ABOUT DIFFERENTIABILITY AND VBG, CLASS

MALGORZATA TUROWSKA

ABSTRACT

Let X be a finite dimensional real Banach space. We show that if the contingent of
the curve I': (a,b) — X fulfils some conditions then each parametrization of that curve
is VBG.. Stanislaw Saks proved that each V BG. function is differentiable at a set of

full Lebesgue measure. The result of this paper is a partial converse of that theorem.

1. INTRODUCTION

We will present a generalization of the concepts of functions of bounded
variation in the restricted sense (V B,) and of generalized bounded variation
in the restricted sense (VBG,) in the case of functions of a real variable
that takes values in a real normed space. Let us recall first these definitions
in the case of real-valued functions.

Definition 1. [2], [5] If F: [a,b] — R and [a, 8] C [a,b], then the value
sup {|F'(z) — F(y)|: @ € [, B,y € [ov, B]}

is called an oscillation of the mapping F' on the interval [, f] and is denoted
by w(F, [, B]).
Definition 2. (2|, [5] If F: [a,b] = R and E C [a,b] then a mapping F' is

called of bounded variation in the restricted sense on the set E, or simply,

is of VB, on E, if
sup ¥ w(F, [ag, b)) < o0,
k
where ([ay,by]) ey 95 any sequence of non-overlapping intervals such that
ap € E, b, € E. The number sup ka(F, [ag, bk]) is denoted by Vg F .

Definition 2 can be generalized on the case of the mapping F' with value
in a real normed space X.
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Definition 3. Let X be a real normed space and || - || be the norm in X.
By the oscillation of a mapping F': [a,b] — X on [a, B] C [a,b] we call the
value

sup {||[F(z) — F(y)l|: = € [, B,y € [o, 5]}
This oscillation will be denoted by the symbol w(F, [, ]).

Definition 4. Let X be a real normed space and E C [a,b]. We say that
a mapping F: [a,b] — X is VB, on the set E, and denote F € VB, (FE), if

supr(F, [ag, be]) < oo,
%

where ([ax,by]) ey 5 any sequence of non-overlapping intervals such that
ap € E, by € E. The value sup ) ;. w(F, [ak,bk]) 1s denoted by Vg F'.

Now we assume that dimension of X is finite. Observe that the fact that
F is VB, on some set is independent of the choice of a norm in X. Let
F:la,b) - X and e = (ey1,...,e,) be a base of the space X. Then

=1

Mappings F; are called coordinates of the mapping F' with respect to the
base e. We also shall use denotation F' = (F1,...,F,). Straightforward
calculations prove the next lemma.

Lemma 1. If X is a finite dimensional real normed space, F: [a,b] — X
and E C [a,b], then:

(1) If F is V By on E then for each base e = (e1,...,e,) of the space
X mappings F; are VB, on E for each i € {1,...,n}.

(2) If there exists a base e = (e1, ..., ey) of the space X for which map-
pings F;, i € {1,...,n}, are VB, on the set E then F € VB,(F).

Definition 5. [2], [5] Let E C [a,b]. We say that a mapping F: [a,b] — R
is of generalized bounded variation in the restricted sense on E, or simply,
is VBG, on the set E, and denote F € VBG.(E), if E is a countable union
of sets on each of which the mapping F is V B,.

We can generalize this definition in the following way:

Definition 6. Let X be a real normed space, E C [a,b]. We will say that
a mapping F: [a,b] = X is VBG, on E, and denote F € VBG.(FE), if E
is a countable union of sets such that for each of them F is V B,.

The proof of the next lemma is technical, we shall omit it.

Lemma 2. Let X be a real normed space, dim X = n, F: [a,b] - X and
E C [a,b]. Then
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(1) If F is VBG, on E then for each base e = (eq,...,ey,) of the space
X mappings F; are VBG, on the set E for eachi € {1,...,n}.

(2) If there exists a base e = (eq,...,ey) of the space X for which each
mapping F;, i € {1,...,n}, is VBG, on E then F is VBG, on E.

Theorem 1. [5]| Let E C [a,b]. If a function F': [a,b] — R is VBG, on
the set B, then I is differentiable at a set of full Lebesgue measure.

The obvious corollary of this theorem for a mappings which take values
in a real normed space is as follows:

Corollary 1. Let X be a real normed space, dim X < oo and E C [a,b].
If a mapping F: [a,b] — X is VBG, on the set E, then F is differentiable
(in the Fréchet sense) at almost all points of this set.

Definition 7. [6] Let 0 # M C Z, where Z is a real normed space. Let
z belong to the closure of the set M. The set

{veZ: I(zn)neN, 2n € M, ILm zZn=2,3(An)nen, Ap > 0: lim )\n(zn—z):v}

n—oo

is called the tangent cone to M at z and is denoted by Tan(M, z). The ele-
ments of Tan(M, z) are called vectors tangent to M at z. The set Tan(M, z)
is also called the contingent of M at z (see [1], [5]).

The basic properties of the contingent and the connections between differ-
entiability of a mapping f: X — Y at a point, where X, Y are real normed
spaces and the contingent of its graph one can find in (3], [4], [6], [7].

Definition 8. If X is a real normed space, then a mapping f is called
an embedding if it is a homeomorphism of the interval (a,b) into X, where
f((a, b)) 1s equipped with the subspace topology. A subset T’ of the space X is
called a curve if there is an embedding f: (a,b) — X such that f((a,b)) =T.
This embedding is called a parametrization of the curve I'.

The following theorem gives a connection between the contingent of
a curve and the existence of a differentiable parametrization of this curve.

Theorem 2. [8| Let X be a real normed space for which 1 < dim X < oo.
Assume that for a curve T' C X the following conditions are fulfilled:

(7) for each p € T' the contingent Tan(T',p) is one-dimensional linear
subspace of X,
(13) there exists a subspace Y of X such that codimY =1 and

Tan(T,p) ¢ Y
for each p € T.
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Then there exist an open interval (c,d) and a differentiable parametriza-
tion g: (¢,d) — T of the curve I' such that

duf g @ > 0.

Corollary 2. [8] Let f: (a,b) — T be a parametrization of the curve T.
Then under assumptions of theorem 2, for every open interval (c,d) there
exists a mapping g: (c,d) — T such that the mapping g~ 1o f: (a,b) — (c,d)
is an increasing homeomorphism.

Corollary 3. [8] Under assumptions of theorem 2, each parametrization of
the curve I' is almost everywhere differentiable.

Theorem 3. 2| A mapping F': [0,1] — R is continuous and VBG, on the
interval [0, 1] if and only if there exists a homeomorphism h: [0,1] — [0, 1]
such that F o h is differentiable.

We will use the following easy generalization of theorem 3.

Theorem 4. Let F: [0,1] — R. The mapping F is continuous and V BG.
on [0,1] if and only if there exists a homeomorphism h: [c,d] — [0, 1] such
that F o h is differentiable.

2. MAIN RESULTS

Applying theorem 2., lemma 2. and theorem 4. we will prove that each
parametrization of a curve I satisfying assumptions of theorem 2 is V BG,.
The following theorem is a partial converse of the corollary 1.

Theorem 5. Let X be a real normed space such that 1 < dim X < oo.
Assume that for a curve I' C X the following conditions are fulfilled:

(i) for each p € T' the contingent Tan(I',p) is one-dimensional linear

subspace of X,
(7i) there exists a subspace Y of X such that codimY =1 and

Tan(T',p) ¢ Y

for each p € T.

Then each parametrization f: (a,b) — T' of the curve T' is VBG, in
(a,b).

Proof. Let f: (a,b) — I' be a parametrization of the curve I'. By theorem 2,
there exists a differentiable parametrization g: (¢,d) — I' of that curve.
Obviously f~! o g is a homeomorphism of (c,d) onto (a,b).

Fix an interval [c1, d;] contained in (c¢,d). Then there exists an interval
[a1,b1] in the set (a,b) such that the mapping
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(f71 ° 9) llev,au] * [e1,d1] — [aq, b1]
is a homeomorphism of [c1,d;] onto [a1, b].
Denote h* = (f_1 og) liev,di)s J* = fliay ) and g* = glic, 4,)- Obviously,
f* is continuous and ¢* is differentiable.
Fix a base e = (eq,...,e,) of the space X. Then

FFO=) file: and g¢*(1) = gi(r)es,
i=1 =1

where f7: [a1,b1] = R, ¢7: [c1,di] = R, i € {1,...,n} and t € [a1,b1],
T € [e1,dy]. Since g* = f* o h*, then ¢gf = f* o h* for each i € {1,...,n}.
The mapping ¢* is differentiable, so ¢} is differentiable if i € {1,...,n}.
Moreover, h* is a homeomorphism and f;* is continuous if i € {1,...,n}
and by theorem 4 we have ff € VBG,([a1,b1]) for each i € {1,...,n}.
By lemma 2(2) we conclude that the mapping

[fila, b)) = X

is VBG, in [a1, b1]. Therefore the mapping f is V BG, on each closed subin-
terval of (a,b). The interval (a, b) is a countable union of closed subintervals,
so the mapping f is VBG, on (a,b). O
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