SCIENTIFIC ISSUES Jan Długosz University in Częstochowa Mathematics XIX (2014) 245–249

ABOUT DIFFERENTIABILITY AND VBG_{*} CLASS

MAŁGORZATA TUROWSKA

Abstract

Let X be a finite dimensional real Banach space. We show that if the contingent of the curve $\Gamma: (a, b) \to X$ fulfils some conditions then each parametrization of that curve is VBG_* . Stanisław Saks proved that each VBG_* function is differentiable at a set of full Lebesgue measure. The result of this paper is a partial converse of that theorem.

1. INTRODUCTION

We will present a generalization of the concepts of functions of bounded variation in the restricted sense (VB_*) and of generalized bounded variation in the restricted sense (VBG_*) in the case of functions of a real variable that takes values in a real normed space. Let us recall first these definitions in the case of real-valued functions.

Definition 1. [2], [5] If $F: [a, b] \to \mathbb{R}$ and $[\alpha, \beta] \subset [a, b]$, then the value $\sup \left\{ |F(x) - F(y)| \colon x \in [\alpha, \beta], y \in [\alpha, \beta] \right\}$

is called an oscillation of the mapping F on the interval $[\alpha, \beta]$ and is denoted by $\omega(F, [\alpha, \beta])$.

Definition 2. [2], [5] If $F: [a, b] \to \mathbb{R}$ and $E \subset [a, b]$ then a mapping F is called of bounded variation in the restricted sense on the set E, or simply, is of VB_* on E, if

$$\sup\sum_{k}\omega\big(F,[a_k,b_k]\big)<\infty,$$

where $([a_k, b_k])_{k \in \mathbb{N}}$ is any sequence of non-overlapping intervals such that $a_k \in E$, $b_k \in E$. The number $\sup \sum_k \omega(F, [a_k, b_k])$ is denoted by $V_E F$.

Definition 2 can be generalized on the case of the mapping F with value in a real normed space X.

[•] Małgorzata Turowska — e-mail: malgorzata.turowska@apsl.edu.pl Pomeranian University in Słupsk.

M. TUROWSKA

Definition 3. Let X be a real normed space and $\|\cdot\|$ be the norm in X. By the oscillation of a mapping $F: [a,b] \to X$ on $[\alpha,\beta] \subset [a,b]$ we call the value

$$\sup \left\{ \|F(x) - F(y)\| \colon x \in [\alpha, \beta], y \in [\alpha, \beta] \right\}.$$

This oscillation will be denoted by the symbol $\omega(F, [\alpha, \beta])$.

Definition 4. Let X be a real normed space and $E \subset [a, b]$. We say that a mapping $F: [a, b] \to X$ is VB_* on the set E, and denote $F \in VB_*(E)$, if

$$\sup\sum_{k}\omega\big(F,[a_k,b_k]\big)<\infty,$$

where $([a_k, b_k])_{k \in \mathbb{N}}$ is any sequence of non-overlapping intervals such that $a_k \in E$, $b_k \in E$. The value $\sup \sum_k \omega(F, [a_k, b_k])$ is denoted by $V_E F$.

Now we assume that dimension of X is finite. Observe that the fact that F is VB_* on some set is independent of the choice of a norm in X. Let $F: [a, b] \to X$ and $e = (e_1, \ldots, e_n)$ be a base of the space X. Then

$$F = \sum_{i=1}^{n} F_i e_i.$$

Mappings F_i are called coordinates of the mapping F with respect to the base e. We also shall use denotation $F = (F_1, \ldots, F_n)$. Straightforward calculations prove the next lemma.

Lemma 1. If X is a finite dimensional real normed space, $F: [a, b] \to X$ and $E \subset [a, b]$, then:

- (1) If F is VB_* on E then for each base $e = (e_1, \ldots, e_n)$ of the space X mappings F_i are VB_* on E for each $i \in \{1, \ldots, n\}$.
- (2) If there exists a base $e = (e_1, \ldots, e_n)$ of the space X for which mappings F_i , $i \in \{1, \ldots, n\}$, are VB_* on the set E then $F \in VB_*(E)$.

Definition 5. [2], [5] Let $E \subset [a, b]$. We say that a mapping $F : [a, b] \to \mathbb{R}$ is of generalized bounded variation in the restricted sense on E, or simply, is VBG_* on the set E, and denote $F \in VBG_*(E)$, if E is a countable union of sets on each of which the mapping F is VB_* .

We can generalize this definition in the following way:

Definition 6. Let X be a real normed space, $E \subset [a,b]$. We will say that a mapping $F: [a,b] \to X$ is VBG_* on E, and denote $F \in VBG_*(E)$, if E is a countable union of sets such that for each of them F is VB_* .

The proof of the next lemma is technical, we shall omit it.

Lemma 2. Let X be a real normed space, dim X = n, $F: [a, b] \to X$ and $E \subset [a, b]$. Then

246

- (1) If F is VBG_* on E then for each base $e = (e_1, \ldots, e_n)$ of the space X mappings F_i are VBG_* on the set E for each $i \in \{1, \ldots, n\}$.
- (2) If there exists a base $e = (e_1, \ldots, e_n)$ of the space X for which each mapping F_i , $i \in \{1, \ldots, n\}$, is VBG_* on E then F is VBG_* on E.

Theorem 1. [5] Let $E \subset [a,b]$. If a function $F: [a,b] \to \mathbb{R}$ is VBG_* on the set E, then F is differentiable at a set of full Lebesgue measure.

The obvious corollary of this theorem for a mappings which take values in a real normed space is as follows:

Corollary 1. Let X be a real normed space, dim $X < \infty$ and $E \subset [a, b]$. If a mapping $F: [a, b] \to X$ is VBG_* on the set E, then F is differentiable (in the Fréchet sense) at almost all points of this set.

Definition 7. [6] Let $\emptyset \neq M \subset Z$, where Z is a real normed space. Let z belong to the closure of the set M. The set

$$\left\{\!v\!\in\!Z\colon \exists (z_n)_{n\in\mathbb{N}}, z_n\!\in\!M, \lim_{n\to\infty} z_n\!=\!z, \exists (\lambda_n)_{n\in\mathbb{N}}, \lambda_n>0\colon \lim_{n\to\infty} \lambda_n(z_n\!-\!z)\!=\!v\right\}$$

is called the tangent cone to M at z and is denoted by $\operatorname{Tan}(M, z)$. The elements of $\operatorname{Tan}(M, z)$ are called vectors tangent to M at z. The set $\operatorname{Tan}(M, z)$ is also called the contingent of M at z (see [1], [5]).

The basic properties of the contingent and the connections between differentiability of a mapping $f: X \to Y$ at a point, where X, Y are real normed spaces and the contingent of its graph one can find in [3], [4], [6], [7].

Definition 8. If X is a real normed space, then a mapping f is called an embedding if it is a homeomorphism of the interval (a,b) into X, where f((a,b)) is equipped with the subspace topology. A subset Γ of the space X is called a curve if there is an embedding $f: (a,b) \to X$ such that $f((a,b)) = \Gamma$. This embedding is called a parametrization of the curve Γ .

The following theorem gives a connection between the contingent of a curve and the existence of a differentiable parametrization of this curve.

Theorem 2. [8] Let X be a real normed space for which $1 < \dim X < \infty$. Assume that for a curve $\Gamma \subset X$ the following conditions are fulfilled:

- (i) for each $p \in \Gamma$ the contingent $\operatorname{Tan}(\Gamma, p)$ is one-dimensional linear subspace of X,
- (ii) there exists a subspace Y of X such that $\operatorname{codim} Y = 1$ and

$$\operatorname{Tan}(\Gamma, p) \not\subset Y$$

for each $p \in \Gamma$.

Then there exist an open interval (c, d) and a differentiable parametrization $g: (c, d) \to \Gamma$ of the curve Γ such that

$$\inf_{t\in(c,d)}\left\|g'(t)\right\|>0.$$

Corollary 2. [8] Let $f: (a, b) \to \Gamma$ be a parametrization of the curve Γ . Then under assumptions of theorem 2, for every open interval (c, d) there exists a mapping $g: (c, d) \to \Gamma$ such that the mapping $g^{-1} \circ f: (a, b) \to (c, d)$ is an increasing homeomorphism.

Corollary 3. [8] Under assumptions of theorem 2, each parametrization of the curve Γ is almost everywhere differentiable.

Theorem 3. [2] A mapping $F: [0,1] \to \mathbb{R}$ is continuous and VBG_* on the interval [0,1] if and only if there exists a homeomorphism $h: [0,1] \to [0,1]$ such that $F \circ h$ is differentiable.

We will use the following easy generalization of theorem 3.

Theorem 4. Let $F: [0,1] \to \mathbb{R}$. The mapping F is continuous and VBG_* on [0,1] if and only if there exists a homeomorphism $h: [c,d] \to [0,1]$ such that $F \circ h$ is differentiable.

2. Main results

Applying theorem 2., lemma 2. and theorem 4. we will prove that each parametrization of a curve Γ satisfying assumptions of theorem 2 is VBG_* . The following theorem is a partial converse of the corollary 1.

Theorem 5. Let X be a real normed space such that $1 < \dim X < \infty$. Assume that for a curve $\Gamma \subset X$ the following conditions are fulfilled:

- (i) for each $p \in \Gamma$ the contingent $\operatorname{Tan}(\Gamma, p)$ is one-dimensional linear subspace of X,
- (ii) there exists a subspace Y of X such that $\operatorname{codim} Y = 1$ and

$$\operatorname{Tan}(\Gamma, p) \not\subset Y$$

for each $p \in \Gamma$.

Then each parametrization $f: (a, b) \to \Gamma$ of the curve Γ is VBG_* in (a, b).

Proof. Let $f: (a, b) \to \Gamma$ be a parametrization of the curve Γ . By theorem 2, there exists a differentiable parametrization $g: (c, d) \to \Gamma$ of that curve. Obviously $f^{-1} \circ g$ is a homeomorphism of (c, d) onto (a, b).

Fix an interval $[c_1, d_1]$ contained in (c, d). Then there exists an interval $[a_1, b_1]$ in the set (a, b) such that the mapping

248

$$\left(f^{-1} \circ g\right)|_{[c_1,d_1]} \colon [c_1,d_1] \to [a_1,b_1]$$

is a homeomorphism of $[c_1, d_1]$ onto $[a_1, b_1]$.

Denote $h^* = (f^{-1} \circ g)|_{[c_1,d_1]}, f^* = f|_{[a_1,b_1]}$ and $g^* = g|_{[c_1,d_1]}$. Obviously, f^* is continuous and g^* is differentiable.

Fix a base $e = (e_1, \ldots, e_n)$ of the space X. Then

$$f^*(t) = \sum_{i=1}^n f_i^*(t)e_i$$
 and $g^*(\tau) = \sum_{i=1}^n g_i^*(\tau)e_i$,

where $f_i^* : [a_1, b_1] \to \mathbb{R}$, $g_i^* : [c_1, d_1] \to \mathbb{R}$, $i \in \{1, \ldots, n\}$ and $t \in [a_1, b_1]$, $\tau \in [c_1, d_1]$. Since $g^* = f^* \circ h^*$, then $g_i^* = f_i^* \circ h^*$ for each $i \in \{1, \ldots, n\}$. The mapping g^* is differentiable, so g_i^* is differentiable if $i \in \{1, \ldots, n\}$.

Moreover, h^* is a homeomorphism and f_i^* is continuous if $i \in \{1, \ldots, n\}$ and by theorem 4 we have $f_i^* \in VBG_*([a_1, b_1])$ for each $i \in \{1, \ldots, n\}$. By lemma 2(2) we conclude that the mapping

$$f^* \colon [a_1, b_1] \to X$$

is VBG_* in $[a_1, b_1]$. Therefore the mapping f is VBG_* on each closed subinterval of (a, b). The interval (a, b) is a countable union of closed subintervals, so the mapping f is VBG_* on (a, b).

References

- G. Bouligand, Introduction à la géométrie infinitésimale directe, Librairie Vuibert, Paris 1932.
- [2] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math., 659, Springer-Verlag, Berlin 1978.
- [3] H. Federer, *Geometric Measure Theory*, Springer Verlag, Berlin, Heidelberg, New York 1969.
- [4] T. M. Flett, Differential analysis, Cambridge University Press, London 1980.
- [5] S. Saks, Theory of the Integral, G. E. Stechert & Co., Warszawa–Lwów–New York 1937.
- [6] L. Schwartz, Analyse Mathématique, vol 1, Hermann, Paris 1967.
- [7] M. Turowska, A geometric condition for differentiability, Tatra Mt. Math. Publ. 28 (2004), 179-186.
- [8] M. Turowska, On curves possessing parametrizations whose derivatives are separated from zero, Real functions, density topology and related topics, Łódź University Press 2011, 173-182.

Received: October 2014

Małgorzata Turowska Pomeranian University in Słupsk, Institute of Mathematics, ul. Arciszewskiego 22d, 76-200 Słupsk, Poland *E-mail address*: malgorzata.turowska@apsl.edu.pl