PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing Dosimetry Accuracy: Characterization and Verification of an Experimental Cylindrical Graphite Ionization Chamber for Dosimetry of Therapeutic Photon Beams in Reference Conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Three cylindrical graphite ionization chambers have been constructed, one of which, DW3, participated in the BIPM.RI(I)-K4 key comparisons for absorbed dose to water in a gamma radiation field of the 60Co radionuclide, achieving a positive result. This prompted us to attempt to use the experimental DW2 chamber (twin to DW3 chamber) for dosimetry of high-energy photon beams used clinically with the aim of reducing the value of the total standard uncertainty of the measured radiation dose. Material and methods: The performance of the DW2 chamber was first tested in gamma ray fields of 137Cs and 60Co. Subsequently, the chamber was calibrated in a 60Co beam relative to the GUM primary standard (DW3). Then, the kQ factors for 6, 10, and 15 MV photon beams produced by Versa HD, Elekta accelerators were determined using Monte Carlo methods. Next, for the same beams, the correction factors for saturation (ks) and the polarity (kpol) were experimentally determined. Finally, the DW2 chamber was used to measure the absorbed dose to water under reference conditions. The obtained results were compared to those of a commercial Farmer-type ionization chamber, model 30013 by PTW. A metrological conformity test was used for evaluation. Results: The relative differences between the two chambers (DW2 vs Farmer chamber) in measured absorbed dose to water for 6, 10, and 15 MV photon beams were −0.1 %, 0.2 %, and 0.7 %, respectively. The relative standard uncertainties of the dose measurement under reference conditions using the DW2 chamber were approximately 0.6 % which are lower than those for the commercial chamber (Farmer) of 0.89 %. Conclusions: The obtained results confirm that the DW2 ionization chamber is an accurate tool for measuring absorbed dose to water under reference conditions for therapeutic photon beams. Lower measurement uncertainty will translate into higher precision in monitoring and calibration of the accelerator’s output.
Rocznik
Strony
158--163
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Holy Cross Cancer Centre, Medical Physics Department, Kielce, Poland
  • Central Office of Measures, Electricity and Radiation Department, Ionizing Radiation Laboratory, Warsaw, Poland
  • Central Office of Measures, Electricity and Radiation Department, Ionizing Radiation Laboratory, Warsaw, Poland
autor
  • Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
  • Central Office of Measures, Electricity and Radiation Department, Ionizing Radiation Laboratory, Warsaw, Poland
  • Holy Cross Cancer Centre, Medical Physics Department, Kielce, Poland
  • Holy Cross Cancer Centre, Medical Physics Department, Kielce, Poland
  • Central Office of Measures, Electricity and Radiation Department, Ionizing Radiation Laboratory, Warsaw, Poland
  • Jan Kochanowski University, Institute of Physics, Kielce, Poland
  • Holy Cross Cancer Centre, Nuclear Medicine Department with PET Division, Kielce, Poland
Bibliografia
  • 1. Kessler C, Burns D, Knyziak A, Szymko M, Derlaciński M. Key comparison BIPM.RI(I)-K4 of the absorbed dose to water standards of the GUM, Poland and the BIPM in 60Co gamma radiation. Metrologia. 2021;58(1A):06014. doi:10.1088/0026-1394/58/1a/06014
  • 2. International Commission on Radiation Units & Measurements. ICRU REPORT 90: Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications. ICRU; 2016.
  • 3. International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy, Technical Reports Series No. 398 (Rev. 1). IAEA, Vienna; 2024.
  • 4. Szymko MM, Knyziak AB, Derlaciński M. Graphite ionization chamber as an ionometric standard of absorbed dose to water for Co-60 gamma radiation. Measurement. 2022;194:110928. doi:10.1016/j.measurement.2022.110928
  • 5. Bozydar Knyziak A, Rzodkiewicz W, Kaczorowska E, Derlacinski M. New X-ray testing methods of aerosol products for industrial radiography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017;844:141-146. doi:10.1016/j.nima.2016.11.015
  • 6. Szymko MM, Michalik L, Knyziak AB, Wójtowicz AW. Development and characterization of air kerma cavity standard. Measurement. 2019;136:647-657. doi:10.1016/j.measurement.2019.01.010
  • 7. Kessler C, Burns D, Knyziak A, Szymko M, Derlaciński M. Key comparison BIPM.RI(I)-K1 of the air-kerma standards of the GUM, Poland and the BIPM in 60Co gamma radiation. Metrologia. 2021;58(1A):06011. doi:10.1088/0026-1394/58/1a/06011
  • 8. Baumann K, Horst F, Zink K, Gomà C. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high‐energy photon and proton beams. Medical Physics. 2019;46(10):4639-4653. doi:10.1002/mp.13737
  • 9. Alissa M, Zink K, Tessier F, Schoenfeld AA, Czarnecki D. Monte Carlo calculated beam quality correction factors for two cylindrical ionization chambers in photon beams. Physica Medica. 2022;94:17-23. doi:10.1016/j.ejmp.2021.12.012
  • 10. Andreo P, Burns DT, Kapsch RP, et al. Determination of consensus k Q values for megavoltage photon beams for the update of IAEA TRS-398. Phys Med Biol. 2020;65(9):095011. doi:10.1088/1361-6560/ab807b
  • 11. Ferrari A, Sala PR, Fasso A, Ranft J. FLUKA: A Multi-Particle Transport Code. Office of Scientific and Technical Information (OSTI); 2005. doi:10.2172/877507
  • 12. Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement, Technical report, Joint Committee for Guides in Metrology, JCGM 100:2008.
  • 13. Kacker RN, Kessel R, Sommer KD. Assessing differences between results determined according to the guide to the expression of uncertainty in measurement. J Res Natl Inst Stand Technol. 2010;115(6):453. doi:10.6028/jres.115.031
  • 14. Klein EE, Hanley J, Bayouth J, et al. Task Group 142 report: Quality assurance of medical accelerators. Medical Physics. 2009;36(9Part1):4197-4212. doi:10.1118/1.3190392
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-000382c4-9df4-48ce-ba70-ec2dbd5b8f39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.