PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical Properties of Silicon Cast Iron

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents results of pitting corrosion studies of selected silicon cast irons. The range of studies included low, medium and high silicon cast iron. The amount of alloying addition (Si) in examined cast irons was between 5 to 25 %. Experimental melts of silicon cast irons [1-3] were conducted in Department of Foundry of Silesian University of Technology in Gliwice and pitting corrosion resistance tests were performed in Faculty of Biomedical Engineering in Department of Biomaterials and Medical Devices Engineering of Silesian University of Technology in Zabrze. In tests of corrosion resistance the potentiostat VoltaLab PGP201 was used. Results obtained in those research complement the knowledge about the corrosion resistance of iron alloys with carbon containing Si alloying addition above 17 % [4-6]. Obtained results were supplemented with metallographic examinations using scanning electron microscopy. The analysis of chemical composition for cast irons using Leco spectrometer was done and the content of alloying element (silicon) was also determined using the gravimetric method in the laboratory of the Institute of Welding in Gliwice. The compounds of microstructure was identify by X-ray diffraction.
Rocznik
Strony
101--106
Opis fizyczny
Bibliogr. 16 poz., il., rys., tab., wykr.
Twórcy
autor
  • Department of Foundry Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice Poland
autor
  • Department of Biomaterials and Medical Devices Engineering, Silesian University of Technology ul. Roosevelta 40, 41-800 Zabrze, Poland
autor
  • Department of Biomaterials and Medical Devices Engineering, Silesian University of Technology ul. Roosevelta 40, 41-800 Zabrze, Poland
autor
  • Department of Foundry Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice Poland
Bibliografia
  • [1] Nuckowski, P.M., Kwaśny, W., Rdzawski, Z., Głuchowski, W.& Pawlyta, M. (2016). Influence of the Repetitive Corrugation on the Mechanism Occurring During Plastic Deformation of CuSn6 Alloy. Archives of Metallurgy and Materials. 61(3), 1261-1264.
  • [2] Stawarz, M., Janerka, K., Jezierski, J., Szajnar, J. (2014). Thermal effect of phase transformations in high silicon cast iron. In Metal 2014: 23rd International Conference on Metallurgy and Materials. Ostrava: TANGER 2014 (pp. 123-128).
  • [3] Stawarz, M., Gromczyk, M., Jezierski, J., Janerka, K. (2015). Analysis of the high silicon cast iron crystallization process with TDA method. In Metal 2015: 24th International Conference on Metallurgy and Materials. Ostrava: TANGER 2015, (pp. 42-47).
  • [4] Korb, L.J. & Olson, D.L. (1992). Corrosion. Volume 13 (9th ed.). International ASM Handbook., 1384 p.
  • [5] Podrzucki, C. (1991). Cast Iron. Volume 2. Kraków: ZG Stop. 298 p. (in Polish).
  • [6] Stefanescu, D.M. (1998). Casting. Volume 15. (4th ed.). International ASM Handbook.
  • [7] Henderieckx, G.D. (2009). Silicon Cast Iron. Gietech BV.
  • [8] Delprete, C., Sesana, R. & Vercelli, A. (2010). Multiaxial damage assessment and life estimation: application to an automotive exhaust manifold. Procedia Engineering. 2, 725-734. DOI:10.1016/j.proeng.2010.03.078.
  • [9] Matteis, P., Scavino, G., Castello, A. & Firrao, D. (2014). High temperature fatigue properties of a Si-Mo ductile cast iron. Procedia Materials Science. 3, 2154-2159. DOI: 10.1016/j.mspro.2014.06.349.
  • [10] Guzik, E. & Wierzchowski, D. (2012) Using cored wires injection 2PE-9 method in the production of ferritic Si-Mo ductile iron castings. Archives of Foundry Engineering. 12(4), 53-56.
  • [11] Magnusson Åberg, L. & Hartung, C. (2012). Solidification of SiMo nodular cast iron for high temperature applications. Trans Indian Inst Met. 65(6), 633-636. DOI:10.1007/s12666-012-0216-8.
  • [12] Shreira L.L. (1966). Corrosion. Volume 1. Warszawa: Scientific and Technical Publishing. (in Polish).
  • [13] Stawarz, M. (2017). SiMo Ductile Iron Crystallization Process. Archives of Foundry Engineering. 17(1), 147-152. DOI: 10.1515/afe-2017-0027.
  • [14] Kajzer, A., Kajzer, W., Gołombek, K., Knol, M., Dzielicki, J. & Walke, W. (2016). Corrosion resistance, eis and wettability of the implants made of 316 LVM steel used in chest deformation treatment. Archives of Metallurgy and Materials. 61(2a), 767-770. DOI:10.1515/amm-2016-0130.
  • [15] Szewczenko, J., Marciniak, J., Kajzer, W. & Kajzer, A. (2016). Evaluation of corrosive resistance of titanium alloys used for medical implants. Arch. Metall. Mater. 61(2a), 695-700. DOI:10.1515/amm-2016-0118.
  • [16] Basiaga, M., Kajzer, W., Walke, W., Kajzer, A. & Kaczmarek, M. (2016). Evaluation of physicochemical properties of surface modified Ti6Al4V and Ti6Al7Nb alloys used for orthopedic implants Materials Science and Engineering. C(68), 851-860. DOI:10.1016/j.msec. 2016.07.042.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-000228c4-e41d-4e13-add7-22c1665a185e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.