Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono metodę korekcji czułości matrycowych detektorów podczerwieni, która nie wymaga pamiętania pełnej tablicy współczynników korekcyjnych. Wartości współczynników korekcji czułości dla każdej kolumny detektorów IR w matrycy są aproksymowane wielomianem n-tego stopnia w funkcji numeru wiersza. Pozwala to na zmniejszenie wymagań dla systemu cyfrowego przetwarzania sygnału z matrycy, ponieważ w pamięci są przechowywane tylko współczynniki wielomianów dla poszczególnych kolumn matrycy zamiast współczynniki korekcyjne dla wszystkich detektorów. Opracowana metoda jest tylko nieznacznie gorsza od metody dwupunktowej używającej kompletnych tablic współczynników korekcyjnych.
EN
In this paper a nonuniformity correction (NUC) method for infrared focal plane array (IRFPA) response that uses a reduced table of correction coefficients is presented. In this method the gain correction coefficients of infrared detectors in array are estimated by means of the approximation polynomials (Eq. 1) of the row number for the each detector column in the array. It allows reducing significantly hardware requirements for the IRFPA output readout system because the system has to store in a memory just the poly-nomial coefficients for particular columns instead of the correction coefficients for all detectors in the array. The polynomial coefficients are assigned by the least mean square method using the set of true gain coefficients which are obtained, as in the two-point correction procedure, by means of infrared blackbodies (Fig. 2). After that the gain coefficients estimated by these polynomials can be used in the standard NUC algorithm to compensate a detector response nonuniformity. The real-time processing of a detector response is possible especially when the field-programmable gate array devices are applied to the IRFPA readout system. The proposed NUC method is just a bit worse than the two-point correction with the full table of the gain correction coefficients (Fig. 4).
PL
W artykule przedstawiono wyniki badań metod korekcji niejednorodności odpowiedzi matrycy detektorów podczerwieni (IR), w których współczynniki korekcyjne wyznacza się na podstawie odpowiedzi matrycy na jednorodne promieniowanie IR ciała czarnego. Badania prowadzone były przy użyciu matrycy mikrobolometrycznej wykonanej w technologii krzemu amorficznego oraz systemu i cyfrowego przetwarzania sygnału z matrycy, zaprojektowanego w układzie programowalnym FPGA. Jako źródeł promieniowania IR użyto powierzchniowych ciał czarnych wykonanych w Instytucie Optoelektroniki WAT. Testowane były algorytmy korekcji niejednorodności z liniową oraz nieliniową aproksymacją charakterystyk detektorów IR w matrycy. Przedstawiono również modyfikację algorytmu korekcji dwupunktowej, w którym do kompensacji niejednorodności odpowiedzi detektorów bolometrycznych użyto zewnętrznej przesłony na obiektyw.
EN
In this paper, the nonuniformity correction (NUC) methods for an uncooled infrared focal plane array (IRFPA) that use the detectors response on an uniform radiance of infrared reference to calculate the suitable NUC coefficients are evaluated. Tests were carried on an amorphous silicon microbolometer IRFPA by using a digital system implemented on a field-programmable gate array (FPGA) device to readout the IRFPA output. As the infrared references, extended surface blackbodies developed at the Institute of Optoelectronics, MUT were applied to tests. The NUC algorithms with linear and nonlinear approximations of the IR detector characteristics were examined. Moreover, the modified two-point nonuniformity correction method which uses an external shutter of the lens to compensate an influence of a camera housing temperature change on the microbolometers response is also presented.
3
Content available remote Low voltage differential signal interface for thermal vision camera
EN
In this article the external digital interface specially designed for thermographic camera built in Military University Of Technology is described. The aim of article is to illustrate challenges encountered during design process of thermal vision camera. This article explains main requirements for interface to transfer Infra-Red digital data and describes the solution which we elaborated based on Low Voltage Differential Signaling (LVDS) physical layer and signaling scheme.
PL
W artykule opisano zewnętrzny interfejs komunikacyjny zaprojektowany do przesyłania danych pomiarowych z kamery termowizyjnej opracowanej w Wojskowej Akademii Technicznej. Omówiono opracowaną magistralę szeregową transmitującą dane w standardzie LVDS. Opisano moduł sterujący transmisją szeregową zaimplementowany w układzie FPGA oraz specjalnie opracowany protokół komunikacyjny.
EN
In the paper, reference-based nonuniformity correction methods for microbolometer infrared detectors are discussed and tested. In order to evaluate their effectiveness, a complete readout circuit for amorphous silicon microbolometer focal plane array has been designed. The tests were carried out on a developed stand including several extended blackbodies. Some modification of standard two-point correction algorithm incorporating detectors response at external shutter to compensate offset drift is also proposed. The obtained results are presented.
5
Content available remote Pyrometric method of temperature measurement with compensation for solar radiation
EN
Outdoor remote temperature measurements in the infrared range can be very inaccurate because of the influence of solar radiation reflected from a measured object. In case of strong directional reflection towards a measuring device, the error rate can easily reach hundreds per cent as the reflected signal adds to the thermal emission of an object. As a result, the measured temperature is much higher than the real one. Error rate depends mainly on the emissivity of an object and intensity of solar radiation. The position of the measuring device with reference to an object and the Sun is also important. The method of compensation of such undesirable influence of solar radiation will be presented. It is based on simultaneous measurements in two different spectral bands, short-wavelength and long-wavelength ones. The temperature of an object is derived from long-wavelength data only, whereas the short-wavelength band, the corrective one, is used to estimate the solar radiation level. Both bands were selected to achieve proportional changes of the output signal due to solar radiation. Knowing the relation between emissivity and solar radiation levels in both spectral bands, it is possible to reduce the measurement error several times.
PL
W artykule został przedstawiony celownik termowizyjny do broni strzeleckiej klasyfikowany, jako kamera III generacji. Celownik pracuje w zakresie dalekiej podczerwieni (LWIR) i zbudowany jest na bazie matrycowego mikrobolometrycznego detektora podczerwieni ze stabilizacją temperatury w układzie Peltiera. Celownik termowizyjny został zbadany laboratoryjnie (w tym badania klimatyczne i wibracyjne) i wyniki badań potwierdziły zakładane parametry taktyczno-techniczne. Celownik poddano także specjalistycznym badaniom poligonowym w Wojskowym Instytucie Technicznym Uzbrojenia, gdzie prowadzono badania strzelaniem na siedmiu typach broni od kalibru 5,56 mm do 12,7 mm.
EN
The paper presents the thermal weapon sight, which can be classified as 3-rd generation camera. The sight operates in the LWIR range and uses microbolometer focal plane array with thermoelectric temperature stabilizer. The sight has been thoroughly tested (including environmental and vibration tests) and the result confirmed its assumed technical and tactical characteristics. The sight was also tested at Military Institute of Armament Technology, where the shooting test were performed with different weapons of calibers ranging from 5.56 mm to 12.7 mm.
PL
Śledzenie obiektów jest coraz częściej stosowane w systemach wizyjnych używanych do ochrony mienia, kompresji sekwencji wideo czy w produkcji filmowej. Śledzenie obiektu polega na wyznaczeniu jego położenia na pewnej klatce obrazu, na podstawie znajomości jego położenia na poprzednich klatkach. Zadanie to jest szczególnie utrudnione, jeśli wymagany jest krótki czas wykonywania śledzenia. Ponadto w obrazie termowizyjnym nie można śledzić obiektów za pomocą metod stosowanych dla obrazu widzialnego. W artykule został omówiony nowy algorytm śledzenia obiektów w obrazie termowizyjnym polegający na modyfikacji metody Sum of Squared Differences.
EN
Real-time object tracking is a critical task in many computer vision applications such as surveillance, object based video compression, or driver assistance. Object tracking is a process of finding a chosen object within a frame using the knowledge about its position in the previous frames. The most challenging issues encountered during visual object tracking are cluttered background, noise, occlusions and change in appearance of the tracked objects. This task is even more challenging when tracking is time constrained, and evaluation of the object position has to be performed in real-time. There exist many techniques for tracking objects but most of them are implemented in colour vision systems. Tracking algorithms for thermal vision systems have not been investigated well yet. This paper deals with adopting the sum of squared differences (SSD) tracking algorithm to thermal vision image sequences. Gradient based tracking methods, like SSD, evaluate target transition by finding changes between two consequent frames. The changes are estimated with gradients in space and time by finding the smallest SSD coefficient. This method is of relatively low computational complexity and can be used in real-time system. In the paper the enhanced SSD algorithm is presented. The enhancement consists in the conditional model update based on the SSDVar coefficient. There is also presented an experiment in which the traditional and enhanced SSD methods are compared.
PL
W artykule przedstawiono algorytm śledzenia obiektów na obrazach termowizyjnych za pomocą zmodyfikowanej metody SSD oraz propozycję jego implementacji sprzętowej w module programowalnym FPGA. Zastosowanie technologii FPGA pozwoliło na zastosowanie kilku technik przyspieszania obliczeń. Moduły realizujące algorytm zostały zaprojektowane tak, by obliczenia prowadzony były w trybie pipeliningu. Ponadto w celu zwiększenia szybkości działania algorytmu zastosowane zostało zrównoleglenie obliczeń. W artykule opisano architekturę zaprojektowanego systemu przetwarzania obrazów i śledzenia obiektów na obrazie metodą SSD.
EN
In the article the architecture of hardware implementation of SSD tracking algorithm for thermal images is proposed. Object tracking is a process of finding chosen object on the following frame using knowledge about its position in previous frames [1, 3]. Gradient based methods like Sum-of-Squared-Differences (SSD) localize targets by analyzing differences between consequent frames. Finding target movement is performed by searching minimum of cost function in space and time. Cost function in this approach is a sum of squared differences. Sum of squared differences coefficient is a measure of difference between two fragments of images and equals (1). If searched object was detected at point (x, y) in previous frame, finding its location in following frame would mean finding (u, v) for which SSD coefficient is the smallest. The picture fragment centered at (x, y) with size equal to the size of the object is treated as the object model. Point (u, v) will then be a centre of the object that is the most similar to the model. This object in new frame is the one found by the SSD algorithm. SSD object estimation is not always reliable, when object is obscured or noised. To distinct reliable position estimation from noisy one the special SSDVar (2) coefficient was developed. The algorithm to calculate SSD coefficient for set of image fragments was proposed to be implemented in hardware, using parallel computation for every compared image fragments. The architecture of parallelized SSD computation unit is shown on Fig. 4 and Fig. 5. Main parts of computation unit were simulated in Quartus II environment.
PL
W artykule przedstawiono system do cyfrowego sterowania i przetwarzania obrazu termowizyjnego cechujący się znaczną elastycznością stosowanych metod i algorytmów. Zaprojektowany system realizuje szereg czynność, do których należą: odczytanie i sterowanie modułem matrycy detektorów IR, wykonanie korekcji niejednorodności detektorów matrycy, wyznaczenie wartości pikseli dla uszkodzonych detektorów, sterowanie wyświetlaniem obrazu termowizyjnego w ustalonym formacie. Ponadto system może zostać uzupełniony o algorytmy przetwarzania danych zależne od jego konkretnego zastosowania. System został tak zaprojektowany, że algorytmy przetwarzania danych niezbędne do konkretnego zastosowania mogą zostać zaimplementowane w systemie bez ingerencji w elementy sprzętowe.
EN
A digital system for control and thermal image processing which has high flexibility regarding implemented methods and algorithms is presented. The designed system performs many actions: control signal readout from infrared focal plane array, nonuniformity correction of detectors response in array, bad pixels replacement, and producing thermal image in required format for the display. Moreover, other digital signal processing algorithms can be implemented in this system depending on the application. The algorithm implementation is made without any change in hardware.
PL
W artykule jest przedstawiony algorytm kompensacji rozrzutu czułości detektorów mikrobolometrycznych oraz jego realizacja sprzętowa i zastosowanie. Algorytm zawiera właściwości korekcji jednopunktowej i korekcji dwupunktowej, które są stosowane do kompensacji niejednorodności odpowiedzi matryc detektorów podczerwieni. W zaproponowanym algorytmie liczba operacji matematycznych wykonywanych sprzętowo podczas korekcji odpowiedzi detektora w matrycy jest ograniczona do jednego mnożenia i dwóch operacji dodawania. Algorytm korekcji był testowany z matrycą mikrobolometryczną o rozdzielczości 384x288 pikseli i rozmiarze detektora 35 µm firmy ULIS (Francja). Źródłem jednorodnego promieniowania podczerwonego było specjalne ciało czarne o dużej powierzchni promieniującej. W wyniku badań uzyskano niejednorodność odpowiedzi matrycy po korekcji poniżej 0,16 % dla zakresu temperatury ciała czarnego od 20°C do 50°C i temperatury otoczenia 21°C ± 2,5°C. Niejednorodność odpowiedzi matrycy bez korekcji wynosiła 8,1 %.
EN
A nonuniformity correction (NUC) algorithm for microbolometer infrared focal plane array (FPA) and its hardware implementation and application are presented. The NUC algorithm includes features of the one-point correction and the two-point correction which are used for compensation of FPA response nonuniformity. In proposed NUC algorithm the number of mathematical operations performed by hardware to compensate a response nonuniformity of particular detectors in array is reduced to one multiplication and two additions. As the uniform infrared source a special extended black body was applied. The NUC algorithm was tested with the 384x288 microbolometers FPA with 35µm pixel-pitch manufactured by ULIS (France). During tests the microbolometer FPA response nonuniformity (RNU) after correction was obtained under 0.16% (std dev/mean) at the blackbody temperature range from 20°C to 50°C and the ambient temperature of 21°C ± 2.5°C. The RNU value without any correction was equaled 8.1%.
PL
W artykule przedstawiono system do cyfrowej analizy i przetwarzania obrazu zastosowany w kamerze termowizyjnej. Zaprojektowany system realizuje szereg czynność, do których należą: sterowanie układem matrycy mikrobolometrycznej, wykonanie korekcji niejednorodności detektorów matrycy, wyznaczenie wartości sygnału dla uszkodzonych detektorów, sterowanie wyświetlaniem obrazu termowizyjnego. System został tak zaprojektowany, że algorytmy przetwarzania danych niezbędne do konkretnego zastosowania mogą zostać zaimplementowane w systemie bez ingerencji w elementy sprzętowe. Zostało to uzyskane przez zastosowanie układu programowalnego FPGA oraz układu mikroprocesorowego, które mogą być programowane w systemie.
EN
The paper presents a system for image digital analysis and processing used in a thermal camera. A programmable system ensures significant flexibility for registration of methods and algorithms. It means that it is possible to change or add the processing algorithms, of the data from detectors array, performed in the camera. The system designed for digital analysis and processing of a thermal image controls a system of a microbolometrer focal plane array in order to read a value of the signal from all detector arrays, corrects non-uniformities of detectors array, determines a signal value for bad pixels, and controls displaying a thermal image of a specific format. Moreover, data processing algorithms can be added to the system in dependence on its predicted application. Thus, camera service can be simplified by automatic selection of parameters of thermal camera operation. By applying the methods of signal analysis, a thermal camera can be used not only for observation but also for detection and recognition of appearing objects and phenomena. Data processing methods, employed in a given device, depend on a definite application and on a kind of the analysed data. Thus, they cannot be universal ones and not chosen once and for all. The system has been designed in such a way that data processing algorithms, indispensable for the defined application, can be implemented in the system with no interference in hardware elements. It has been obtained using FPGA programmable device and microprocessor system that are in-system programmable.
PL
W artykule jest przedstawiony algorytm korekcji niejednorodności odpowiedzi matrycy mikrobolometrycznej oraz jego implementacja w układzie programowalnym FPGA. Algorytm NUC (nonuniformity correction) łączy właściwości korekcji jednopunktowej i korekcji dwupunktowej, które są stosowane do kompensacji niejednorodności odpowiedzi matrycy detektorów podczerwieni. Podstawowa różnica między zaproponowanym algorytmem NUC a standardowym algorytmem korekcji dwupunktowej jest w sposobie wyznaczania współczynników korekcji przesunięć charakterystyk poszczególnych mikrobolometrów w matrycy. Pozwala to zredukować liczbę operacji matematycznych wykonywanych sprzętowo podczas korekcji do jednego mnożenia i dwóch operacji dodawania. Wszystkie moduły cyfrowe użyte do przetwarzania sygnału wyjściowego z matrycy, zbierania danych i wyświetlania obrazu zostały zaprojektowane za pomocą zestawu laboratoryjego Altera DSP Development Kit Stratix II Edition. Zaproponowany algorytm NUC był testowany z matrycą mikrobolometryczną 384´288 pikseli o rozmiarze detektora 35 žm firmy ULIS (Francja). Podczas badań uzyskano niejednorodność odpowiedzi matrycy mikrobolometrycznej po korekcji NUC poniżej 0,16 % (std dev/mean) dla zakresu temperatury ciała czarnego od 20 °C do 50 °C i zmiany temperatury otoczenia š2.5 °C. Niejednorodność odpowiedzi matrycy bez korekcji wynosiła 8,1 %.
EN
A nonuniformity correction (NUC) algorithm for microbolometer infrared focal plane array (FPA) and its implementation on a field programmable gate array (FPGA) device are presented. The NUC algorithm integrates features of the one-point correction and the two-point correction (TPC) to compensate FPA response nonuniformity. The main difference between the proposed NUC algorithm and the standard TPC is in the way of offset coefficients evaluation for individual microbolometers in FPA. It allows reducing the number of mathematical operations performed by hardware to one multiplication and two additions. All digital modules for processing of FPA output, data collection, and image displaying have been designed by the use of the Altera DSP Development Kit Stratix II Edition. The proposed NUC algorithm was tested with the ULIS 384´288 microbolometer FPA with 35žm pixel-pitch. During tests the microbolometer FPA response nonuniformity (RNU) after correction was obtained under 0.16% (std dev/mean) at the blackbody temperature range from 20°C to 50°C and the ambient temperature change of š2.5°C. The RNU value was equaled 8.1% without any correction.
PL
Zdalna detekcja substancji chemicznych jest ważnym problemem w wielu dziedzinach działalności człowieka. Spektrum zastosowań tego typu urządzeń rozciąga się od monitorowania procesów technologicznych poprzez diagnostykę instalacji przemysłowych i monitoring środowiska naturalnego po zastosowania militarne. W artykule przedstawiono różne metody i urządzenia do zdalnej, pasywnej detekcji skażeń chemicznych. W części teoretycznej przedstawiono analizę możliwości detekcji skażeń chemicznych przez kamerę termowizyjną.
EN
The range of applications in which remote sensing of chemical compounds is used extends from monitoring of technological processes through diagnostics of industrial installation and environmental control up to military applications. The methods and the devices for passive detection of selected gases will be presented. The change of the signal reaching the camera caused by the presence of gas was calculated. The successful detection can be obtained if the absorption (or emission) of a gas cloud, located between object (background) and the camera, causes signal change greater or equal to NETD of the camera.
PL
W artykule zostały przedstawione wyniki badań niejednorodności odpowiedzi matrycy mikrobolometrycznej zastosowanej w modelu kamery termowizyjnej. Kompensacja niejednorodności odpowiedzi była realizowana według standardowego algorytmu korekcji dwupunktowej. Badania prowadzono na specjalnie wykonanym do tego celu stanowisku laboratoryjnym z dwoma powierzchniowymi ciałami czarnymi i układem kolimatora. Opisane są również budowa i właściwości detektora bolometrycznego oraz działanie scalonego układu odczytu w matrycy mikrobolometrycznej.
EN
The paper presents test results of response nonuniformity of microbolometer focal plane array used in thermal camera model. A response nonuniformity compensation was performed according to the standard two-point correction algorithm. The investigations were carried out by means of the developed test stand containing two extended blackbodies and collimator system. The bolometer structure, detector performance, and the operation of a readout integrated circuit in microbolometer focal plane array are also described.
PL
W artykule przedstawiono realizację sprzętową algorytmów korekcji niejednorodności odpowiedzi detektorów w matrycach mikrobolometrycznych. Opisano dwie podstawowe metody kalibracyjne: jednopunktową (OPC) i dwupunktową (TPC). Na podstawie danych pomiarowych matrycy mikrobolometrycznej firmy ULIS wyznaczono współczynniki korekcyjne oraz odpowiedź matrycy zawierającą stały wzorzec szumu (FPN). Do wykonania sprzętowej korekcji niejednorodności użyto zestawu uruchomieniowego DSP Development Kit Stratix II Edition (Altera). W wyniku implementacji algorytmu TPC uzyskano maksymalną wartość niejednorodności resztkowej (RNU) 0,15 % w zakresie temperatury od 273 K do 343 K. W przypadku korekcji jednopunktowej maksymalna wartość RNU była ponad 3 razy większa dla tego samego zakresu temperatury.
EN
In this paper the hardware implementation of response nonuniformity correction (NUC) algorithms of microbolometer focal plane arrays (FPAs) is presented. Two basic calibration methods: one-point correction (OPC) and two-point correction (TPC) are described. The NUC coefficients and FPA response containing fixed pattern noise have been evaluated on the basis of measurement data of the ULIS microbolometer FPA. The DSP Development Kit Stratix II Edition (Altera) has been used to perform the hardware NUC. As a result of TPC algorithm implementation, we have obtained the residual nonuniformity (RNU) of 0.15 % (max.) in temperature range from 273 K to 343 K. In case of OPC implementation the RNU maximum value was over three times higher at the same temperature range.
PL
W artykule opisano budowę i działanie scalonego układu odczytu (ROIC) stosowanego w matrycach mikrobolometrycznych detektorów podczerwieni. Omówiono właściwości pojemnościowego wzmacniacza transimpedancyjnego użytego w układzie ROIC do odczytu sygnału z pojedynczego mikrobolometru w matrycy. Przedstawiono podstawowe parametry monolitycznych matryc mikrobolometrycznych z detektorami z krzemu amorficznego domieszkowanego wodorem. Opisano również metodę dwupunktowej kalibracji stosowaną do korekcji niejednorodności matryc detektorów podczerwieni.
EN
In this paper we describe the structure and the operation of a readout integrated circuit (ROIC) used in microbolometer infrared focal plane arrays (IRFPAs). The properties of a capacitive transimpedance amplifier employed in ROIC to readout a signal from a single microbolometer in FPA are analyzed in detail. The basic parameters of monolithic microbolometer IRFPAs with IR detectors made of hydrogen doped amorphous silicon are presented. The two-point calibration method for a non-uniformity correction (NUC) of IRFPAs is also described.
17
Content available remote An improved model of delay-locked loop in the z-domain
EN
This paper presents an improved z-domain model of the delay-locked loop (DLL). This model describes more accurately the behavior and characteristics of the DLL than the commonly used s-domain models. Since DLL is a mixed-mode circuit, I show a transformation method of the continuous-time part of DLL from s-domain into z-domain. I derive the discrete-time transfer function of the DLL and define the stability conditions for some transfer functions of the loop filter. The z-domain DLL models described by other authors are also discussed.
PL
Artykuł przedstawia udoskonalony model dyskretny pętli DLL (Delay-locked loop) w dziedzinie z. Model ten dokładniej opisuje działanie i właściwości pętli niż stosowany powszechnie model w dziedzinie s. Ponieważ DLL jest układem mieszanym, zatem w artykule przedstawiono metodę transformacji części ciągłej pętli z dziedziny s do dziedziny z. Na podstawie nowego modelu w dziedzinie z wyprowadzono transmitancję dyskretną pętli DLL i dla dwóch transmitancji operatorowych filtru, podano warunki stabilności pętli. W artykule sa dyskutowane modele DLL w dziedzinie z opisane w literaturze.
18
Content available remote JPEG : standard kompresji obrazów cyfrowych
PL
W artykule przedstawiony został standard kompresji cyfrowych obrazów statycznych, nazywany w skrócie JPEG. Omówione zostały wszystkie tryby kompresji przewidziane normą ze szczególnym uwzględnieniem trybu sekwencyjnego, który jest najczęściej wykorzystywany. Na przykładzie obrazu czarno-białego z poziomami szarości skompresowanego w trybie sekwencyjnym JPEG zaprezentowano właściwości dwuwymiarowej transformaty DCT oraz omówiono i zobrazowano procesy kwantyzacji i kodowania. Przedstawionoe zostały również wskaźniki miar stosowanych do porównania własności różnych algorytmów kompresji obrazów.
EN
This paper presents a comprehensive description of JPEG standard targeted for compression of digital still images. It describes all compression modes included in JPEG standard. The detailed description of sequential mode is given. The details of the algorithm are illustrated by an example of grayscale image compression. For example of a grayscale image compressed in sequential JPEG is provided the performance of two-dimensional DCT and the described and illustrated quantization and encoding processes. The paper presents the basic compression measures used for comparing different compression algorithms.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.