Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  anti-synchronization
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, we discuss anti-synchronization between two identical new chaotic systems and anti-synchronization between another two identical new chaotic systems by active nonlinear control. The sufficient conditions for achieving the anti-synchronization of two new chaotic systems are derived based on Lyapunov stability theory. Numerical simulations are provided for illustration and verification of the proposed method.
EN
The coexistence of anti-synchronization and synchronization in chaotic systems is investigated. A novel algorithm is proposed to determine the variables of the master system that should anti-synchronize with corresponding variables of the slave system. Control strategies that guarantee the coexistence of synchronization and anti-synchronization in the unified chaotic system are presented; while numerical simulations are employed to validate and illustrate the effectiveness of the proposed method.
EN
Coexisting self-excited and hidden attractors for the same set of parameters in dissipative dynamical systems are more interesting, important, and difficult compared to other classes of hidden attractors. By utilizing of nonlinear state feedback controller on the popular Sprott-S system to construct a new, unusual 4D system with only one nontrivial equilibrium point and two control parameters. These parameters affect system behavior and transformation from hidden attractors to self-excited attractors or vice versa. As compared to traditional similar kinds of systems with hidden attractors, this system is distinguished considering it has (𝑛-2) positive Lyapunov exponents with maximal Lyapunov exponent. In addition, the coexistence of multi-attractors and chaotic with 2-torus are found in the system through analytical results and experimental simulations which include equilibrium points, stability, phase portraits, and Lyapunov spectrum. Furthermore, the anti-synchronization realization of two identical new systems is done relying on Lyapunov stability theory and nonlinear controllers strategy. lastly, the numerical simulation confirmed the validity of the theoretical results.
EN
The article aims to study the reduced-order anti-synchronization between projections of fractional order hyperchaotic and chaotic systems using active control method. The technique is successfully applied for the pair of systems viz., fractional order hyperchaotic Lorenz system and fractional order chaotic Genesio-Tesi system. The sufficient conditions for achieving anti-synchronization between these two systems are derived via the Laplace transformation theory. The fractional derivative is described in Caputo sense. Applying the fractional calculus theory and computer simulation technique, it is found that hyperchaos and chaos exists in the fractional order Lorenz system and fractional order Genesio-Tesi system with order less than 4 and 3 respectively. The lowest fractional orders of hyperchaotic Lorenz system and chaotic Genesio-Tesi system are 3.92 and 2.79 respectively. Numerical simulation results which are carried out using Adams-Bashforth-Moulton method, shows that the method is reliable and effective for reduced order anti-synchronization.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.