The finding of stem/progenitor cells in postnatal bone marrow and umbilical cord blood, opens up a possibility of using stem cells to treat neurologic diseases. There is a controversy, whether intravenously administered human umbilical cord blood cells (HUCBC) migrate to the brain, differentiate and improve recovery after ischemia. In this study, 13 ×106 cells from non-cultured (non-committed) mononuclear HUCBC fraction were intravenously infused 1, 2, 3 or 7 days after a transient middle cerebral artery occlusion (MCAo) in adult rats. We found few human cells only in the ischemic area, localized mostly around blood vessels with few positive cells in the brain parenchyma. Timing of HUCBC delivery after ischemia or injection of Cyclosporin A at the time of delivery, had no effect on the number of human cells detected in the ischemic brain. Infusion of HUCBC did not reduce infarct volume and did not improve neurologic deficits after MCAo, suggesting that HUCBC failed to migrate/survive in the ischemic brain and did not provide significant neurological benefits.
Human umbilical cord blood is frequently used as a source of transplantable hematopoietic cells and more recently as a target of gene therapy - a new approach for treatment of various disorders. The aim of our study was optimisation of the transfection conditions of cord blood-derived CD34+ hematopoietic cells. Mononuclear cells fraction was isolated from cord blood samples by density gradient centrifugation. Subsequently, CD34+ hematopoietic cells were separated on immuno- magnetic MiniMACS columns. Pure population of CD34+ cells was incubated in a serum free medium supplemented with thrombopoietin, stem cell factor and Flt-3 ligand for 48 h and then transfected with plasmid DNA carrying the enhanced version of green fluorescent protein (EGFP) as a reporter gene. We studied the influence of various pulse settings and DNA concentrations on the transfection efficiency, measured by flow cytometry as the fluorescence of target cells due to the expression of EGFP. The optimal settings were as follows: 4 mm cuvette, 1600 iF, 550 V/cm, and 10 ug of DNA per 500 ul. With these settings we obtained a high transfection frequency (41.2%) without a marked decrease of cell viability. An increase of the pulse capacitance and/or of DNA concentration resulted in a greater electroporation efficiency, but also in a decrease of cell viability. In conclusion, the results described here allow one to recommend electroporation as an efficient method of gene delivery into CD34+ hematopoietic cells derived from human umbilical cord blood.
We compared three methods usually applied in biological dosimetry for estimation of radiation-induced DNA damage in human T and B lymphocytes: alkaline comet assay, micronucleus (MN) test and formation of histone gamma-H2AX foci. Human peripheral blood lymphocytes were fractionated using T cells and B cells isolation kits. Cells were irradiated with doses in the range of 0-1 Gy of X-rays. Induction of DNA damage was assessed by the standard alkaline comet assay, MN test and histone gammaH2AX foci immunofluorescence assay. Notwithstanding different end-points measured by the applied methods, all tests revealed a similar induction of DNA damage in B lymphocytes as compared with T lymphocytes. The results indicated that all three tests detect DNA damage with similar sensitivity, the lowest dose being approximately 0.3 Gy. The difference between irradiated and control cells was expressed as the ratio of the value obtained for irradiated cells (1 Gy) to that for control cells. The highest ratio was obtained for formation of gammaH2AX foci and was 6.2 for T and 13.8 for B lymphocytes, whereas those for comet assay and micronucleus test were 3.5; 3.6 and 5.6; 4.8, respectively.
SDF-1, a chemokine secreted by injured tissues, may be instrumental in chemoattracting CXCR4+ stem cells (SCs) for repair of infarcted myocardium. We hypothesize that the myocardial SDF-1 expression determines also the engraftment and beneficial effects of SCs transplanted into the infarcted heart. Myocardial infarction (MI) was induced in rats by coronary artery ligation. The animals were either sacrificed at 2, 7, 16, 21 or 28 days after MI or were re-operated at 2, 7 or 14 days after MI to receive SCs transplantation, and were sacrificed 14 days later. SCs transplantation consisted of 3 x 15 µl injections of SCs isolated from foetal rat liver (FLSCs) into the myocardium bordering the infarction zone (5 x 106 cells/heart, labelled with PKH2 Green Fluorescent Cell Linker, ~20% CXCR4+). In the MI border zone, SDF-1 and CXCR4 immunostaining was transiently increased after MI, picking at 2 days and down regulating to the sham level by 21 days after MI. Simultaneously, an increased incorporation of CXCR4+ and CD133+ cells into capillaries was evident. AMD1300, a blocker of CXCR4, prevented the post-MI expression of CXCR4. In the MI border zone, the cardiomyocyte cross-sectional diameter increased and capillary/cardiomyocyte ratio decreased systematically during the 28 post-MI days, while an interstitial collagen accumulation demonstrated transient increase. FLSCs did not survive in the non-infarcted hearts. In infarcted hearts, FLSCs survived best when they were injected at 2 days after MI. The survival was negligible again when the injection was performed at 14 days after MI. FLSCs transplanted at 2 days after MI caused a further rise in SDF-1, CXCR4, and CD133 expression, compared with the untreated infarcted hearts. Only FLSCs transplanted at 2 days, but not later, attenuated cardiomyocyte hypertrophy and increased capillary/cardiomyocyte ratio in the MI border zone. These results suggest that myocardial signalling for homing of the endogenous and the exogenous SCs is transiently activated early after MI, that SDF-1 is instrumental in this process, and that there is only a narrow time-window after MI when SCs transplantation results in their efficient myocardial engraftment and beneficial anti-remodelling effect.
Dendritic cells (DC) generated from human umbilical cord blood might replace patients' DC in attempts to elicit tumor-specific immune response in cancer patients. We studied the efficiency of transfection of human cord blood DC with plasmid DNA carrying the enhanced version of green fluorescent protein (EGFP) as a reporter gene, to test if nonviral gene transfer would be a method to load DC with protein antigens for immunotherapy purposes. Cord blood mononuclear cells were cultured in serum-free medium in the presence of granulocyte-monocyte colony stimulating factor (GM-CSF), stem cell factor (SCF) and Flt-3 ligand (FL), to generate DC from their precursors, and thereafter transfected by electroporation. Maturation of DC was induced by stimulation with GM-CSF, SCF, FL and phorbol myristate acetate (PMA). Transfected DC strongly expressed EGFP, but transfection efficiency of DC, defined as HLA-DR+ cells lacking lineage-specific markers, did not exceed 2.5%. Expression of the reporter gene was also demonstrated in the DC generated from transfected, purified CD34+ cord blood cells, by stimulation with GM-CSF, SCF, FL, and tumor necrosis factor α (TNF-α). Transfection of CD34+ cells was very efficient, but proliferation of the transfected cells was much reduced as compared to the untransfected cells. Therefore, the yield of transgene-expressing DC was relatively low. In conclusion, nonviral transfection of cord blood DC proved feasible, but considering the requirements for immunotherapy in cancer patients, transfection of differentiated DC or generation of DC from transfected hematopoietic stem cells provide only a limited number of DC expressing the transgene.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.