Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Aminosilane modified silica was prepared and investigated for the adsorption of textile dyes such as C.I. Acid Orange 7 (AO7), C.I. Reactive Black 5 (RB5) and C.I. Direct Blue 71 (DB71) from aqueous media and wastewaters. The values of the sorption capacities obtained from the Langmuir isotherm model were: 5.3 mg g-1, 58.7 mg g-1 and 72.2 mg g-1 for AO7, DB71 and RB5, respectively. The affinity series of the dyes for the modified silica can be presented as follows: C.I. Reactive Black 5 > C.I. Direct Blue 71> C.I. Acid Orange 7. The influence of anionic surfactant (SDS) and sodium chloride on dye sorption was investigated in a system containing 100 mg L-1 dye and 0.1-1 g L-1 SDS or 1-25 g L-1 NaCl. The sorption capacities decrease with increasing concentration of SDS in the solution. Retention of AO7 and RB5 was reduced in the presence of NaCl. A satisfactory agreement of the experimental data with the pseudo second-order kinetic model was found. Effectiveness of the aminosilane modified silica in raw textile wastewater purification was confirmed.
Content available remote Lignosulfonate and silica as precursors of advanced composites
Advanced silica/lignosulfonate composites were obtained using magnesium lignosulfonate and silica precipitated in a polar medium. For comparative purposes analogous synthesis was performed using commercial silica Aerosil®200. Lignosulfonates are waste products of paper industry and their application in new multifunctional materials is of great economic interest. The composites obtained were subjected to thorough characterization by determination of their physicochemical, dispersive-morphological and electrokinetic properties. Their particle size distribution was measured, SEM images were taken, FT-IR analysis and colorimetric study were made, thermal and electrokinetic stabilities and parameters of porous structure were also determined. The results can be of interest in further application studies
This study focuses on the optimization process of silica synthesis using the sol-gel method while applying a statistical design of experiments which was based on a multilevel mathematical model. The product obtained in the process of optimized synthesis, characterized by the best dispersive and morphological parameters, was used for the preparation of organic/inorganic composites. The organic precursor was Kraft lignin, a high-molecular natural polymer. Synthesis of silica/lignin biocomposites was carried out by three proposed methods. The physicochemical properties and dispersive-morphological properties of each product were determined using the following available methods: Scanning Electron Microscopy - SEM, Non-Invasive Back-Scattering - NIBS, Fourier Transform Infrared Spectroscopy - FT-IR, Thermogravimetric analysis - TG and others. The electrokinetic and thermal properties of the biocomposites sufficed to be applied for example, as a cheap and biodegradable polymer filler. Further areas of application of these composites were sought, especially in electrochemistry as the advanced electrode materials.
Advanced silica/lignin hybrid biomaterials were obtained using hydrated or fumed silicas (Aerosil®200) and Kraft lignin as precursors, which is a cheap and biodegradable natural polymer. To extend the possible range of applications, the silicas were first modified with N-2-(aminoethyl)-3-aminopropyltrimethoxsysilane, and then with Kraft lignin, which had been oxidized with sodium periodate. The SiO2/lignin hybrids and precursors were characterised by means of determination of their physicochemical and dispersive-morphological properties. The effectiveness of silica binding to lignin was verified by FT-IR spectroscopy. The zeta potential value provides relevant information regarding interactions between colloid particles. Measurement of the zeta potential values enabled an indirect assessment of stability for the studied hybrid systems. Determination of zeta potential and density of surface charge also permitted the quantitative analysis of changes in surface charge, and indirectly confirmed the effectiveness of the proposed method for synthesis of SiO2/lignin hybrid materials. A particularly attractive feature for practical use is their stability, especially electrokinetic stability. It is expected that silica/lignin hybrids will find a wide range of applications (polymer fillers, biosorbents, electrochemical sensors), as they combine the unique properties of silica with the specific structural features of lignin. This makes these hybrids biomaterials advanced and multifunctional. [...]
Functional hybrid materials based on magnesium lignosulfonate and silica were obtained and characterized. Magnesium lignosulfonate is a common waste product of the wood pulp industry, while silica is a well-known inorganic material with exceptional physicochemical properties. In this study, silicas with a spherical particle shape were synthesized using a sol-gel method and alternatively in a nonpolar medium. Silica was found to improve the thermal and electrokinetic properties of the final products. The resulting lignosulfonate/silica hybrid materials were analyzed with the use of advanced techniques and measuring methods: scanning electron microscopy, a laser diffraction method enabling particle size measurements, Fourier transform infrared spectroscopy, elemental analysis, thermogravimetry, electrophoretic light scattering, zeta potential measurements, low-temperature nitrogen sorption, and colorimetric analysis. The results enabled the hybrid materials to be characterized from the point of view of potential applications in various branches of industry (for example as polymer fillers, electroactive blends and biosorbents). We additionally indicate new methods for the utilization of waste products, a category to which lignosulfonate certainly belongs.
The immobilization of Amano Lipase A from Aspergillus niger by adsorption onto Stöber silica matrix obtained by sol-gel method was studied. The effectiveness of the enzyme immobilization and thus the usefulness of the method was demonstrated by a number of physicochemical analysis techniques including Fourier Transform Infrared Spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TG), porous structure of the support and the products after immobilization from the enzyme solution with various concentration at different times. The analysis of the process’ kinetics allowed the determination of the sorption parameters of the support and optimization of the process. The optimum initial concentration of the enzyme solution was found to be 5 mg mL-1, while the optimum time of the immobilization was 120 minutes. These values of the variable parameters of the process were obtained by as ensuring the immobilization of the largest possible amount of the biocatalyst at
Content available remote Silica/lignosulfonate hybrid materials: Preparation and characterization
The research reported here concerns the synthesis, characterization and potential applications of silica/lignosulfonate hybrid materials. Three types of silica were used (Aerosil®200, Syloid®244 and hydrated silica), along with magnesium lignosulfonate. The effectiveness of the hybrid material synthesis methodology was confirmed indirectly, using Fourier transform infrared spectroscopy, elemental and colorimetric analysis. Dispersive-morphological analysis indicates that the products with the best properties were obtained using 10 parts by weight of magnesium lignosulfonate per 100 parts of Syloid®244 silica. The relatively high thermal stability recorded for the majority of the synthesized products indicates the potential use of this kind of a material as a polymer filler. Results indicating the high electrokinetic stability of the materials are also of great importance. Additionally, the very good porous structure properties indicate the potential use of silica/lignosulfonate systems as biosorbents of hazardous metal ions and harmful organic compounds.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.