A stochastic cellular automaton is developed for modeling waves in excitable media. A scale of key features of excitation waves can be reproduced in the presented framework such as the shape, the propagation velocity, the curvature effect and spontaneous appearance of target patterns. Some well-understood phenomena such as waves originating from a point source, double spiral waves and waves around some obstacles of various geometries are simulated. We point out that unlike the deterministic approaches, the present model captures the curvature effect and the presence of target patterns without permanent excitation. Spontaneous appearance of patterns, which have been observed in a new experimental system and a chemical lens effect, which has been reported recently can also be easily reproduced. In all cases, the presented model results in a fast computer simulation.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Unconventional computing devices operating on nonlinear chemical media offer an interesting alternative to standard, semiconductor-based computers. In this work we consider database classifiers formed of interacting droplets in which a photosensitive variant of Belousov-Zhabotinsky (BZ) reaction proceeds. We introduce an evolutionary algorithm that searches for optimal construction of a droplets-based classifier for a given problem. The algorithm is based on maximizing the mutual information between the database and the observed evolution of medium. As an example application of chemical database classifiers we apply the idea to the dataset of points belonging to a unit cube. The dataset contains two output classes: 1 for points belonging to a sphere with radius 0.5 located in the cube center, and 0 for points outside of the sphere. The reliability of optimized chemical classifiers of such database for different numbers of droplets involved in data processing is presented.
Simple and complex oscillations have been observed in an asymptotic regime of the Belousov-Zhabotinsky (BZ) system of bromate-malonic acid-ferroin in a continuously stirred tank reactor (CSTR). Changes of the residence time and the influx concentration of malonic acid induce the appearance of regularities in complex patterns which resemble the period adding bifurcation. All experimental results can be reproduced by a simple model suggested earlier for qualitative description of asymptotic and transient oscillations observed in the BZ system.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.