The aim of this paper is to introduce a new approximate method, namely the Optimal Parametric Iteration Method (OPIM) to provide an analytical approximate solution to Thomas-Fermi equation. This new iteration approach provides us with a convenient way to optimally control the convergence of the approximate solution. A good agreement between the obtained solution and some well-known results has been demonstrated. The proposed technique can be easily applied to handle other strongly nonlinear problems.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The purpose of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to solve the nonlinear differential Thomas-Fermi equation. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. An excellent agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.