The activity and stability of niobia supported on silica catalyst have been tested in continuous micro-pilot reactors, for biodiesel production starting from acid vegetable oils. A catalyst was prepared by the impregnation of silica pellets with a loading of 12% of Nb and was extensively characterized. The activity of this catalyst in both esterification and transesterification was tested in a continuous micro-pilot laboratory plant in which acid oil was fed (FFA 10% w/w) at a temperature of 220°C and at a pressure of 60 bar. The niobia based catalyst resulted in a very active catalyst in both esterification (FFA conversion = 95-90%) and transesterification reactions (FAME yield = 80-90%), and the activity remained quite constant for more than 100 h on stream. Notwithstanding this stability, a non-negligible leaching phenomena has been detected, in the case of long-time continuous runs, as the Nb concentration on the spent catalyst resulted lower than that on the fresh one. The obtained result confirms that the leaching of the active specie is one of the most strong problem in heterogeneous catalysis for biodiesel production.
The rate of hydrogen chloride-catalyzed mutarotation reaction of N-(p-chlorophenyl)-B-D-glucopyranosylamine has been studied polarimetrically in absolute methanol at 25 C. Depending on the HCl concentration, conversion of isomer B to isomer A has been found to be either a simple pseudo-first order reaction or a complex process involving two parallel first-order reactions producing a common product.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.